Send to

Choose Destination
Br J Nutr. 1998 Dec;80(6):495-502.

Lipoprotein lipase and the disposition of dietary fatty acids.

Author information

Oxford Lipid Metabolism Group, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, UK.


Lipoprotein lipase (EC; LPL) is a key enzyme regulating the disposal of lipid fuels in the body. It is expressed in a number of peripheral tissues including adipose tissue, skeletal and cardiac muscle and mammary gland. Its role is to hydrolyse triacylglycerol (TG) circulating in the TG-rich lipoprotein particles in order to deliver fatty acids to the tissue. It appears to act preferentially on chylomicron-TG, and therefore may play a particularly important role in regulating the disposition of dietary fatty acids. LPL activity is regulated according to nutritional state in a tissue-specific manner according to the needs of the tissue for fatty acids. For instance, it is highly active in lactating mammary gland; in white adipose tissue it is activated in the fed state and suppressed during fasting, whereas the reverse is true in muscle. Such observations have led to the view of LPL as a metabolic gatekeeper, especially for dietary fatty acids. However, closer inspection of its action in white adipose tissue reveals that this picture is only partially true. Normal fat deposition in adipose tissue can occur in the complete absence of LPL, and conversely, if LPL activity is increased by pharmacological means, increased fat storage does not necessarily follow. LPL appears to act as one member of a series of metabolic steps which are regulated in a highly coordinated manner. In white adipose tissue, it is clear that there is a major locus of control of fatty acid disposition downstream from LPL. This involves regulation of the pathway of fatty acid uptake and esterification, and appears to be regulated by a number of factors including insulin, acylation-stimulating protein and possibly leptin.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Cambridge University Press
Loading ...
Support Center