Format

Send to

Choose Destination
See comment in PubMed Commons below
Trends Neurosci. 1999 Apr;22(4):167-73.

The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience.

Author information

1
Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Abstract

The EGR family of transcription regulatory factors, which is implicated in orchestrating the changes in gene expression that underlie neuronal plasticity, has attracted the attention of both molecular and systems neuroscientists. In this article, the advances made in both these fields of research are reviewed. Recent systems-based studies underscore the remarkable sensitivity and specificity of the induction of the expression of genes encoding EGR-family members in naturally occurring plasticity paradigms. However, they also challenge conventional views of the role of this family in plasticity. Recent molecular studies have identified the gonadotropin subunit, luteinizing hormone beta, as an EGR1-regulated gene in vivo and uncovered an essential role for EGR3 in muscle-spindle development. In addition, the discovery of novel proteins that are capable of suppressing EGR-mediated transcription cast doubt over the prevalent assumption that changes in EGR mRNA or protein levels provide an accurate measure of EGR-driven transcriptional activity.

PMID:
10203854
[Indexed for MEDLINE]

Publication types, MeSH terms, Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center