Format

Send to

Choose Destination
J Immunol. 1999 Apr 15;162(8):4755-61.

Two independent calcineurin-binding regions in the N-terminal domain of murine NF-ATx1 recruit calcineurin to murine NF-ATx1.

Author information

1
Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Japan. jie.liu@dnax.org

Abstract

Intracellular calcium regulates events controlling nuclear translocation of nuclear factor of activated T cells (NF-AT). Calcium-dependent phosphatase calcineurin (CN) plays a central role in this process. Structural and functional analyses of the N-terminal domain of murine NF-ATx1, a member of the NF-AT family, have defined two distinct CN binding regions (CNBRs), CNBR1 and CNBR2, which are located in the region preceding the SP boxes of serine/proline-rich sequences and the region between the SP boxes and Rel similarity domain, respectively. The binding of murine NF-ATx1 (mNF-ATx1) to CN was abolished by deletion of these two regions, yet was unaffected by the individual deletion. In contrast, the nuclear translocation of mNF-ATx1 was much reduced when only CNBR2 was removed. Luciferase assay revealed that both regions are required for mNF-ATx1-dependent activation of the murine IL-2 promoter. Most importantly, recombinant CNBR2 bound CN with a higher affinity, and when expressed in Jurkat cells, it functioned as a dominant negative mutant that prevented the transcription driven by exogenous mNF-ATx1, probably by interfering with the function of CN. We propose that activation of mNF-ATx1 can be modulated through two distinct CN target regions. Our findings provide a new opportunity for pharmacological intervention with Ca2+-dependent signaling events.

PMID:
10202017
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center