Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4279-84.

Rings and filaments of beta protein from bacteriophage lambda suggest a superfamily of recombination proteins.

Author information

Department of Cell Biology and Neuroanatomy, University of Minnesota Medical School, Minneapolis, MN 55455, USA.


The beta protein of bacteriophage lambda acts in homologous genetic recombination by catalyzing the annealing of complementary single-stranded DNA produced by the lambda exonuclease. It has been shown that the beta protein binds to the products of the annealing reaction more tightly than to the initial substrates. We find that beta protein exists in three structural states. In the absence of DNA, beta protein forms inactive rings with approximately 12 subunits. The active form of the beta protein in the presence of oligonucleotides or single-stranded DNA is a ring, composed of approximately 15-18 subunits. The double-stranded products of the annealing reaction catalyzed by the rings are bound by beta protein in a left-handed helical structure, which protects the products from nucleolytic degradation. These observations suggest structural homology for a family of proteins, including the phage P22 erf, the bacterial RecT, and the eukaryotic Rad52 proteins, all of which are involved in homologous recombination.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center