Send to

Choose Destination
Biochemistry. 1999 Apr 13;38(15):4800-8.

Involvement of phenylalanine 272 of DNA polymerase beta in discriminating between correct and incorrect deoxynucleoside triphosphates.

Author information

Departments of Therapeutic Radiology and Genetics, and Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.


DNA polymerase beta is a small monomeric polymerase that participates in base excision repair and meiosis [Sobol, R., et al. (1996) Nature 379, 183-186; Plug, A., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1327-1331]. A DNA polymerase beta mutator mutant, F272L, was identified by an in vivo genetic screen [Washington, S., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1321-1326]. Residue 272 is located within the deoxynucleoside triphosphate (dNTP) binding pocket of DNA polymerase beta according to the known DNA polymerase beta crystal structures [Pelletier, H., et al. (1994) Science 264, 1891-1893; Sawaya, M., et al. (1997) Biochemistry 36, 11205-11215]. The F272L mutant produces errors at a frequency 10-fold higher than that of wild type in vivo and in the in vitro HSV-tk gap-filling assay. F272L shows an increase in the frequency of both base substitution mutations and frameshift mutations. Single-enzyme turnover studies of misincorporation by wild type and F272L DNA polymerase beta demonstrate that there is a 4-fold decrease in fidelity of the mutant as compared to that of the wild type enzyme for a G:A mismatch. The decreased fidelity is due primarily to decreased discrimination between the correct and incorrect dNTP during ground-state binding. These results suggest that the phenylalanine 272 residue is critical for maintaining fidelity during the binding of the dNTP.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center