Format

Send to

Choose Destination
Biochemistry. 1999 Apr 13;38(15):4663-8.

Efficient formation of nitric oxide from selective oxidation of N-aryl N'-hydroxyguanidines by inducible nitric oxide synthase.

Author information

1
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400 CNRS, Université Paris V, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France.

Abstract

Inducible nitric oxide synthase (NOS II) efficiently catalyzes the oxidation of N-(4-chlorophenyl)N'-hydroxyguanidine 1 by NADPH and O2, with concomitant formation of the corresponding urea and NO. The characteristics of this reaction are very similar to those of the NOS-dependent oxidation of endogenous Nomega-hydroxy-L-arginine (NOHA), i.e., (i) the formation of products resulting from an oxidation of the substrate C=N(OH) bond, the corresponding urea and NO, in a 1:1 molar ratio, (ii) the absolute requirement of the tetrahydrobiopterin (BH4) cofactor for NO formation, and (iii) the strong inhibitory effects of L-arginine (L-arg) and classical inhibitors of NOSs. N-Hydroxyguanidine 1 is not as good a substrate for NOS II as is NOHA (Km = 500 microM versus 15 microM for NOHA). However, it leads to relatively high rates of NO formation which are only 4-fold lower than those obtained with NOHA (Vm = 390 +/- 50 nmol NO min-1 mg protein-1, corresponding roughly to 100 turnovers min-1). Preliminary results indicate that some other N-aryl N'-hydroxyguanidines exhibit a similar behavior. These results show for the first time that simple exogenous compounds may act as NO donors after oxidative activation by NOSs. They also suggest a possible implication of NOSs in the oxidative metabolism of certain classes of xenobiotics.

PMID:
10200153
DOI:
10.1021/bi982930p
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center