Send to

Choose Destination
See comment in PubMed Commons below
Toxicology. 1999 Jan 1;132(1):43-55.

Effect of glucuronidation substrates/inhibitors on N-(3,5-dichlorophenyl)succinimide nephrotoxicity in Fischer 344 rats.

Author information

Department of Pharmacology, Marshall University School of Medicine, Huntington, WV 25704-9388, USA.


The agricultural fungicide N-(3,5-dichlorophenyl)succinimide (NDPS) is an acute nephrotoxicant in rats. Our previous studies have strongly suggested that glucuronide conjugation of NDPS metabolites might be a bioactivation step mediating NDPS nephrotoxicity. In this study, effects of substrates and/or inhibitors of primarily glucuronidation on NDPS nephrotoxicity were examined to explore further the role of glucuronidation in NDPS nephrotoxicity. Male Fischer 344 rats (4-6/group) were administered one of the following intraperitoneal (i.p.) pretreatments (dose, pretreatment time) prior to NDPS (0.4 mmol/kg) or NDPS vehicle (sesame oil, 2.5 ml/kg): (1) no pretreatment; (2) borneol (900 mg/kg, 30 min); (3) eugenol (500 mg/kg per day, 3 days); (4) clofibric acid (400 mg/kg, 15 min before (1/2 dose) and 3 h after (1/2 dose)), or (5) valproic acid, sodium salt (1.0 mmol/kg, 15 min). Following NDPS or NDPS vehicle administration, renal function was monitored at 24 and 48 h. Pretreatment with borneol or eugenol, substrates for ether glucuronidation and sulfation (mainly glucuronidation), afforded complete protection against NDPS nephrotoxicity. Substrates for acyl glucuronidation, clofibric acid or valproic acid, mildly reduced or had little effect on NDPS nephrotoxicity, respectively. These results suggest that ether glucuronide conjugates of NDPS metabolites, rather than acyl glucuronide conjugates, may be the primary ultimate nephrotoxicant species mediating NDPS nephrotoxicity.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center