Send to

Choose Destination
Am J Physiol. 1999 Apr;276(4 Pt 1):L549-55.

Regulation of human airway mucins by acrolein and inflammatory mediators.

Author information

Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0056, USA.


Bronchitis, asthma, and cystic fibrosis, marked by inflammation and mucus hypersecretion, can be caused or exacerbated by airway pathogens or irritants including acrolein, an aldehyde present in tobacco smoke. To determine whether acrolein and inflammatory mediators alter mucin gene expression, steady-state mRNA levels of two airway mucins, MUC5AC and MUC5B, were measured (by RT-PCR) in human lung carcinoma cells (NCI-H292). MUC5AC mRNA levels increased after >/=0.01 nM acrolein, 10 microM prostaglandin E2 or 15-hydroxyeicosatetraenoic acid, 1.0 nM tumor necrosis factor-alpha (TNF-alpha), or 10 nM phorbol 12-myristate 13-acetate (a protein kinase C activator). In contrast, MUC5B mRNA levels, although easily detected, were unaffected by these agonists, suggesting that irritants and associated inflammatory mediators increase mucin biosynthesis by inducing MUC5AC message levels, whereas MUC5B is constitutively expressed. When transcription was inhibited, TNF-alpha exposure increased MUC5AC message half-life compared with control level, suggesting that transcript stabilization is a major mechanism controlling increased MUC5AC message levels. Together, these findings imply that irritants like acrolein can directly and indirectly (via inflammatory mediators) increase airway mucin transcripts in epithelial cells.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center