Format

Send to

Choose Destination
J Theor Biol. 1999 Apr 21;197(4):517-26.

On fractal properties of arterial trees.

Author information

1
Departments of Applied Mathematics and of Medical Biophysics, University of Western Ontario, London, Canada. zamir@julian.uwo.ca

Abstract

The question of fractal properties of arterial trees is considered in light of data from the extensive tree structure of the right coronary artery of a human heart. Because of the highly non-uniform structure of this tree, the study focuses on the purely geometrical rather than statistical aspects of fractal properties. The large number of arterial bifurcations comprising the tree were found to have a mixed degree of asymmetry at all levels of the tree, including the depth of the tree where it has been generally supposed that they would be symmetrical. Cross-sectional area ratios of daughter to parent vessels were also found to be highly mixed at all levels, having values both above and below 1.0, rather than consistently above as has been generally supposed in the past. Calculated values of the power law index which describes the theoretical relation between the diameters of the three vessel segments at an arterial bifurcation were found to range far beyond the two values associated with the cube and square laws, and not clearly favoring one or the other. On the whole the tree structure was found to have what we have termed "pseudo-fractal" properties, in the sense that vessels of different calibers displayed the same branching pattern but with a range of values of the branching parameters. The results suggest that a higher degree of fractal character, one in which the branching parameters are constant throughout the tree structure, is unlikely to be attained in non-uniform vascular structures.

PMID:
10196094
DOI:
10.1006/jtbi.1998.0892
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center