Send to

Choose Destination
Blood. 1999 Apr 15;93(8):2586-94.

Stromal cell CD9 regulates differentiation of hematopoietic stem/progenitor cells.

Author information

Second Department of Internal Medicine, Osaka University Medical School, Osaka, Japan.


CD9 belongs to the transmembrane 4 superfamily, and has been shown to influence cell proliferation, motility, and adhesion. We show here that ligation of CD9 modifies proliferation and/or differentiation of hematopoietic stem/progenitors. Pluripotent EML-C1 hematopoietic cells were cocultured with MS-5 stromal cells in the presence of KMC8.8, an anti-CD9 antibody. Numbers of recovered EML-C1 cells were slightly reduced and the antibody caused the hematopoietic cells to migrate beneath the adherent stromal cell layer. Of particular interest, EML-C1 cells recovered from CD9-ligated cultures had undifferentiated properties. Separate pretreatment of the two cell types with antibody showed that stromal-cell CD9 mediated these responses. Spontaneous expression of erythroid marker was completely blocked and there was a shift towards undifferentiated clonogenic progenitors. Immunoprecipitation studies showed that stromal-cell CD9 associates with the beta1 subunit of integrin, as well as a novel 100 kD protein. Antibody cross-linking of cell surface CD9 increased the amount of 100 kD protein that was subsequently coprecipitated with CD9. These observations show that stromal-cell CD9 influences physical interactions with hematopoietic cells and may be one factor that determines the degree of stem cell differentiation.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center