Format

Send to

Choose Destination
Biochemistry. 1999 Mar 30;38(13):4235-44.

Characterizing the response of calcium signal transducers to generated calcium transients.

Author information

1
Department of Medical Biochemistry, The Ohio State University Medical Center, Columbus 43210, USA.

Abstract

Cellular Ca2+ transients and Ca2+-binding proteins regulate physiological phenomena as diverse as muscle contraction, neurosecretion, and cell division. When Ca2+ is rapidly mixed with slow Ca2+ chelators, EGTA, or Mg2+/EDTA, artificial Ca2+ transients (ACTs) of varying duration (0.1-50 ms half-widths (hws)) and amplitude can be generated. We have exposed several Ca2+ indicators, Ca2+-binding proteins, and a Ca2+-dependent enzyme to ACTs of various durations and observed their transient binding of Ca2+, complex formation, and/or activation. A 0.1 ms hw ACT transiently occupied approximately 70% of the N-terminal regulatory sites of troponin C consistent with their rapid Ca2+ on-rate (8.7 +/- 2.0 x 10(7) M-1 s-1). A 1.1 ms hw ACT produced approximately 90% transient binding of the N-terminal of calmodulin (CaM) to the RS-20 peptide, but little binding of CaM's C-terminal to RS-20. A 0.6 ms hw ACT was sufficient for the N-terminal of CaM to transiently bind approximately 60% of myosin light chain kinase (MLCK), while a 1.8 ms hw ACT produced approximately 22% transient activation of the sarcoplasmic reticulum (SR) Ca2+/ATPase. In both cases, the ACT had fallen back to baseline approximately 10-30 ms before maximal binding of CaM to MLCK or SR Ca2+/ATPase activation occurred and binding and enzyme activation persisted long after the Ca transient had subsided. The use of ACTs has allowed us to visualize how the Ca2+-exchange rates of Ca2+-binding proteins dictate their Ca2+-induced conformational changes, Ca2+-induced protein/peptide and protein/protein interactions, and enzyme activation and inactivation, in response to Ca2+ transients of various amplitude and duration. By characterizing the response of these proteins to ACTs, we can predict with greater certainty how they would respond to natural Ca2+ transients to regulate cellular phenomena.

PMID:
10194340
DOI:
10.1021/bi982495z
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center