Send to

Choose Destination
See comment in PubMed Commons below
Br J Pharmacol. 1999 Feb;126(4):1034-40.

Investigation of the inhibitory effects of homocysteine and copper on nitric oxide-mediated relaxation of rat isolated aorta.

Author information

Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, England, UK.


1. Elevated plasma levels of homocysteine (HC) and copper have both been associated with the development of inflammatory vascular diseases, such as atherosclerosis. In this study, the effects of a combination of HC and copper on nitric oxide (NO)-mediated relaxation of isolated rat aortic rings were investigated. 2. Exposure to HC (10-100 microM; 30 min) had no effect on relaxation to acetylcholine (ACh; 0.01-10 microM, n=4). Pre-incubation of aortic rings with a higher concentration of HC for an extended period (1 mM; 180 min) significantly inhibited endothelium-dependent relaxation (n=4), but this inhibition was prevented by the presence of the copper chelator bathocuprione (10 microM, 180 min, n=6). 3. Exposure to HC (100 microM) and copper (10-100 microM; 30 min) caused a copper concentration-dependent inhibition of endothelium-dependent relaxation (n=4). This inhibitory effect was reduced in the presence of either superoxide dismutase (SOD; 100 u ml(-1); n=4) or catalase (100 u ml(-1); n=4), and further reduced by the presence of both enzymes (n=5). 4. HC and copper (100 microM; 30 min) significantly inhibited endothelium-independent relaxation to glyceryl trinitrate (0.01-10 microM; n=8). In contrast, HC (1 mM), alone or in combination with copper (100 microM), did not inhibit relaxation to the endothelium-independent relaxant sodium nitroprusside (0.01-10 microM; n=4). 5. These data indicate that the presence of copper greatly enhances the inhibitory actions of HC on NO-mediated relaxation of isolated aortic rings. The reduction of inhibition by catalase and SOD indicates a possible role for copper-catalyzed generation of superoxide and hydrogen peroxide leading to an increased inactivation or decreased production of endothelium-derived NO.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center