Format

Send to

Choose Destination
Lipids. 1999 Feb;34(2):139-49.

Neonatal polyunsaturated fatty acid metabolism.

Author information

1
Department of Paediatrics, University of British Columbia, Vancouver, Canada. sinnis@unixg.ubc.ca

Abstract

The importance of n-6 and n-3 polyunsaturated fatty acids (PUFA) in neonatal development, particularly with respect to the developing brain and retina, is well known. This review combines recent information from basic science and clinical studies to highlight recent advances in knowledge on PUFA metabolism and areas where research is still needed on infant n-6 and n-3 fatty acid requirements. Animal, cell culture, and infant studies are consistent in demonstrating that synthesis of 22:6n-3 involves C24 PUFA and that the amounts of 18:2n-6 and 18:3n-3 influence PUFA metabolism. Studies to show that addition of n-6 fatty acids beyond delta6-desaturase alters n-6 fatty acid metabolism with no marked increase in tissue 20:4n-6 illustrate the limitations of analyses of tissue fatty acid compositions as an approach to study the effects of diet on fatty acid metabolism. New information to show highly selective pathways for n-6 and n-3 fatty acid uptake in brain, and efficient pathways for conservation of 22:6n-3 in retina emphasizes the differences in PUFA metabolism among different tissues and the unique features which allow the brain and retina to accumulate and maintain high concentrations of n-3 fatty acids. Further elucidation of the delta6-desaturases involved in 24:5n-6 and 22:6n-3 synthesis; the regulation of fatty acid movement between the endoplasmic reticulum and peroxisomes; partitioning to acylation, desaturation and oxidation; and the effects of dietary and hormonal factors on these pathways is needed for greater understanding of neonatal PUFA metabolism.

PMID:
10102240
DOI:
10.1007/s11745-999-0348-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center