Send to

Choose Destination
Br J Cancer. 1999 Mar;79(7-8):1151-7.

Mechanisms of relapse in acute leukaemia: involvement of p53 mutated subclones in disease progression in acute lymphoblastic leukaemia.

Author information

Department of Haematology, Nottingham City Hospital, University of Nottingham, UK.


Mutations of the p53 tumour suppressor gene are infrequent at presentation of both acute myeloblastic leukaemia (AML) and acute lymphoblastic leukaemia (ALL), being found in between 5-10% of AML and 2-3% of ALL. Here we have studied the frequency of detection of p53 mutations at relapse of both AML and B-precursor ALL. In those patients with detectable mutations at relapse we investigated whether the mutation was detectable at presentation and was thus an early initiating event or whether it had arisen as a late event associated with relapse. Bone marrow samples from 55 adults and children with relapsed AML (n = 41) or ALL (n = 14) were analysed for p53 gene alterations by direct sequencing of exons 5-9. For samples where a p53 mutation was found at relapse, analysis of presentation samples was carried out by direct sequencing of the exon involved, or by allele-specific polymerase chain reaction (PCR) if the mutation could not be detected using direct sequencing. A p53 mutated gene was found at relapse in seven out of 55 cases. The frequency was higher in relapsed ALL (four out of 14 cases; 28.6%) compared to AML (three out of 41 cases; 7.3%). In five out of the seven cases presentation samples were available to study for the presence of the mutation. In two out of two AML patients the p53 mutation was detectable in the presentation sample by direct sequencing. In three ALL patients analysis of presentation material by direct sequencing showed a small mutant peak in one case, the other two being negative despite the sample analysed containing > 90% blast cells. However in both of these patients, the presence of p53 mutation was confirmed in the presentation sample using allele-specific PCR. In one of these patients the emergence of a subclone at relapse was confirmed by clonality analysis using IgH fingerprinting. Our results confirm that in ALL p53 mutations are present in a proportion of patients at relapse. Furthermore cells carrying the mutation are detectable at presentation in a minor clone suggesting that p53 mutations in ALL may be a mechanism contributing to disease relapse.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center