Send to

Choose Destination
See comment in PubMed Commons below
Genomics. 1999 Mar 15;56(3):288-95.

Cloning of a novel G-protein-coupled receptor GPR 51 resembling GABAB receptors expressed predominantly in nervous tissues and mapped proximal to the hereditary sensory neuropathy type 1 locus on chromosome 9.

Author information

  • 1Department of Biochemistry and Molecular Biology, Merck Frosst Center for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec, H9H 3L1,


Query of the expressed sequence tag database with the rat metabotropic GABABR1A receptor amino acid sequence using the TFASTA algorithm revealed two partial cDNA fragments whose sequence information was then used to isolate by PCR a novel full-length human cDNA encoding a putative G-protein-coupled receptor (GPCR), termed GPR 51. Sequence analysis revealed that it encoded a protein of 941 amino acids, similar in size and homology to GABAB receptors followed by metabotropic glutamate receptors but not other GPCRs. GPR 51 expressed in COS-1 cells showed no specific binding for [3H](+)baclofen and when expressed in Xenopus oocyte and Xenopus melanophore functional assays showed no activity to GABA, (-)baclofen, and glutamic acid. Northern blot analysis and in situ hybridization revealed that GPR 51 transcripts were predominantly expressed in the central nervous system with highest abundance in the cortex, thalamus, hippocampus, amygdala, cerebellum, and spinal cord. In contrast, GPR 51 receptor transcripts were almost not detected in the peripheral tissues. Gene GPR 51 was localized by radiation hybrid mapping to chromosome 9, 4.81 cR from the WI-8684 marker, and proximal to the hereditary sensory neuropathy type 1 locus.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center