Format

Send to

Choose Destination
Protein Sci. 1998 Aug;7(8):1796-801.

Efficient sequence analysis of the six gene products (7-74 kDa) from the Escherichia coli thiamin biosynthetic operon by tandem high-resolution mass spectrometry.

Author information

1
Department of Chemistry, Cornell University, Ithaca, New York 14853-1301, USA.

Abstract

The 10(5) resolving power and MS/MS capabilities of Fourier-transform mass spectrometry provide electrospray ionization mass spectra containing >100 molecular and fragment ion mass values of high accuracy. Applying these spectra to the detection and localization of errors and modifications in the DNA-derived sequences of proteins is illustrated with the thiCEFSGH thiamin biosynthesis operon from Escherichia coli. Direct fragmentation of the multiply-charged intact protein ions produces large fragment ions covering the entire sequence; further dissociation of these fragment ions provides information on their sequences. For ThiE (23 kDa), the entire sequence was verified in a single spectrum with an accurate (0.3 Da) molecular weight (Mr) value, with confirmation from MS/MS fragment masses. Those for ThiH (46 kDa) showed that the Mr value (1 Da error) represented the protein without the start Met residue. For ThiF (27 kDa), MS/MS localized a sequence discrepancy to a 34 residue peptide. The first 107 residues of ThiC (74 kDa) were shown to be correct, with C-terminal heterogeneity indicated. For ThiG (predicted Mr = 34 kDa), ESI/FTMS showed two components of 7,310.74 (ThiS) and 26,896.5 Da (ThiG); MS/MS uncovered three reading frame errors and a stop codon for the first protein. MS/MS ions are consistent with 68 fragments predicted by the corrected ThiS/ThiG DNA sequences.

PMID:
10082377
PMCID:
PMC2144080
DOI:
10.1002/pro.5560070815
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center