Motion of spin-labeled side chains in T4 lysozyme: effect of side chain structure

Biochemistry. 1999 Mar 9;38(10):2947-55. doi: 10.1021/bi9826310.

Abstract

Previous studies have shown that the mobility of nitroxide side chains in a protein, inferred from the electron paramagnetic resonance (EPR) spectra, can be used to classify particular sites as helix surface sites, tertiary contact sites, buried sites, or loop sites. In addition, the sequence dependence of mobility can identify regular secondary structure. However, in the most widely used side chain, an apparent interaction of the nitroxide ring with the protein at some helix surface sites gives rise to EPR spectra degenerate with those at tertiary contact sites. In the present study, we use selected sites in T4 lysozyme to evaluate novel nitroxide side chains designed to resolve this degeneracy. The results indicate that the reagent 3-(methanesulfonylthiomethyl)-2,2, 5,5-tetramethylpyrrolidin-1-yloxy reacts with cysteine to give a nitroxide side chain that has a high contrast in mobility between helix surface and tertiary contact sites, effectively resolving the degeneracy. The reagent 3-(iodomercuriomethyl)-2,2,5,5-tetramethyl-2, 5-dihydro-1H-pyrrol-1-yloxy reacts with cysteine to provide a mercury-linked nitroxide that also shows reduced interaction with the protein at most helix surface sites. Thus, these new side chains may be the preferred choices for structure determination using site-directed spin labeling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Substitution / genetics
  • Arginine / genetics
  • Aspartic Acid / genetics
  • Bacteriophage T4 / enzymology*
  • Binding Sites / genetics
  • Electron Spin Resonance Spectroscopy
  • Models, Molecular
  • Muramidase / chemistry*
  • Muramidase / genetics
  • Mutagenesis, Site-Directed
  • Nitrogen Oxides / chemistry
  • Peptide Fragments / chemistry
  • Peptide Fragments / genetics
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Spin Labels*
  • Structure-Activity Relationship
  • Valine / genetics

Substances

  • Nitrogen Oxides
  • Peptide Fragments
  • Spin Labels
  • Aspartic Acid
  • Arginine
  • Muramidase
  • Valine