Format

Send to

Choose Destination
Curr Opin Genet Dev. 1999 Feb;9(1):89-96.

Eukaryotic DNA mismatch repair.

Author information

1
Ludwig Institute for Cancer Research, Department of Medicine and CancerCenter, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0660, USA. rkolodner@ucsd. edu.

Abstract

Eukaryotic mismatch repair (MMR) has been shown to require two different heterodimeric complexes of MutS-related proteins: MSH2-MSH3 and MSH2-MSH6. These two complexes have different mispair recognition properties and different abilities to support MMR. Alternative models have been proposed for how these MSH complexes function in MMR. Two different heterodimeric complexes of MutL-related proteins, MLH1-PMS1 (human PMS2) and MLH1-MLH3 (human PMS1) also function in MMR and appear to interact with other MMR proteins including the MSH complexes and replication factors. A number of other proteins have been implicated in MMR, including DNA polymerase delta, RPA (replication protein A), PCNA (proliferating cell nuclear antigen), RFC (replication factor C), Exonuclease 1, FEN1 (RAD27) and the DNA polymerase delta and epsilon associated exonucleases. MMR proteins have also been shown to function in other types of repair and recombination that appear distinct from MMR. MMR proteins function in these processes in conjunction with components of nucleotide excision repair (NER) and, possibly, recombination.

PMID:
10072354
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center