Format

Send to

Choose Destination
Nature. 1999 Feb 25;397(6721):694-7.

A ferric-chelate reductase for iron uptake from soils.

Author information

1
Department of Biochemistry and Genetics, The Medical School, University of Newcastle, UK. n.j.robinson@ncl.ac.uk

Abstract

Iron deficiency afflicts more than three billion people worldwide, and plants are the principal source of iron in most diets. Low availability of iron often limits plant growth because iron forms insoluble ferric oxides, leaving only a small, organically complexed fraction in soil solutions. The enzyme ferric-chelate reductase is required for most plants to acquire soluble iron. Here we report the isolation of the FRO2 gene, which is expressed in iron-deficient roots of Arabidopsis. FRO2 belongs to a superfamily of flavocytochromes that transport electrons across membranes. It possesses intramembranous binding sites for haem and cytoplasmic binding sites for nucleotide cofactors that donate and transfer electrons. We show that FRO2 is allelic to the frd1 mutations that impair the activity of ferric-chelate reductase. There is a nonsense mutation within the first exon of FRO2 in frd1-1 and a missense mutation within FRO2 in frd1-3. Introduction of functional FRO2 complements the frd1-1 phenotype in transgenic plants. The isolation of FRO2 has implications for the generation of crops with improved nutritional quality and increased growth in iron-deficient soils.

PMID:
10067892
DOI:
10.1038/17800
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center