Send to

Choose Destination
J Neurosci Methods. 1999 Feb 1;87(1):67-76.

Methodology for coupling local application of dopamine and other chemicals with rapid in vivo electrochemical recordings in freely-moving rats.

Author information

Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA.


Methodology is presented for constructing and using an electrode/microcannulae assembly that allows in vivo electrochemical measurements coupled with local application of dopamine (DA) and other chemicals in the unanesthetized freely-moving rat. Rats were implanted with a voltammetric electrode constructed of a carbon fiber sealed in fused silica tubing attached to a pair of stainless steel guide cannulae, into which fused silica injection cannulae were inserted for local application of DA and other chemicals. Precise delivery of nanoliter volumes was accomplished using a syringe drive combined with a fluid swivel to deliver the solutions to the injection cannulae. A newly-designed miniature potentiostat connected to a commutator via a modular telephone jack assembly allowed for high-speed chronoamperometric electrochemical recordings in freely-moving rats. Initial experiments characterized the in vitro electrochemical recording characteristics of the voltammetric electrode. In vivo studies were also carried out to study clearance of locally-applied DA and of potassium-evoked endogenous DA in the striatum and nucleus accumbens of freely-moving rats. In addition, the effects of chloral hydrate anesthesia on DA clearance signals in the nucleus accumbens were investigated. Moreover, the stability and reproducibility of this recording technique for measuring exogenous DA clearance was verified over a period of 5 days. Finally, the concurrent effects of systemic cocaine injection on DA uptake in nucleus accumbens and locomotor activity were examined. These studies support the conclusion that the methodology described herein allows for rapid chronoamperometric electrochemical recordings in freely-moving rats with precise microapplications of DA and other chemicals combined with concurrent measures of animal behavior.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center