Processing, mixing, and particle size reduction of forages for dairy cattle

J Anim Sci. 1999 Jan;77(1):180-6. doi: 10.2527/1999.771180x.

Abstract

Adequate forage amounts in both physical and chemical forms are necessary for proper ruminal function in dairy cows. Under conditions in which total amounts of forage or particle size of the forage are reduced, cows spend less time ruminating and have a decreased amount of buoyant digesta in the rumen. These factors reduce saliva production and allow ruminal pH to fall, depressing activity of cellulolytic bacteria and causing a prolonged period of low ruminal pH. Insufficient particle size of the diet decreases the ruminal acetate-to-propionate ratio and reduces ruminal pH. The mean particle size of the diet, the variation in particle size, and the amount of chemical fiber (i.e., NDF or ADF) are all nutritionally important for dairy cows. Defining amounts and physical characteristics of fiber is important in balancing dairy cattle diets. Because particle size plays such an important role in digestion and animal performance, it must be an important consideration from harvest through feeding. Forages should not be reduced in particle size beyond what is necessary to achieve minimal storage losses and what can be accommodated by existing equipment. Forage and total mixed ration (TMR) particle sizes are potentially reduced in size by all phases of harvesting, storing, taking out of storage, mixing, and delivery of feed to the dairy cow. Mixing feed causes a reduction in size of all feed particles and is directly related to TMR mixing time; field studies show that the longest particles (>27 mm) may be reduced in size by 50%. Forage and TMR particle size as fed to the cows should be periodically monitored to maintain adequate nutrition for the dairy cow.

Publication types

  • Review

MeSH terms

  • Animal Feed*
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Cattle / physiology*
  • Dairying*
  • Food Handling
  • Hydrogen-Ion Concentration
  • Particle Size
  • Rumen / chemistry