Format

Send to

Choose Destination
Mamm Genome. 1999 Mar;10(3):249-58.

Mapping and characterization of quantitative trait loci for non-insulin-dependent diabetes mellitus with an improved genetic map in the Otsuka Long-Evans Tokushima fatty rat.

Author information

1
Institute for Animal Experimentation, University of Tokushima School of Medicine, Kuramoto 3, Tokushima 770, Japan.

Abstract

The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an animal model for obese-type, non-insulin-dependent diabetes mellitus (NIDDM) in humans. We have previously reported four quantitative trait loci (QTLs) responsible for NIDDM on Chromosomes (Chrs) 7, 14, 8, and 11 (Nidd1-4/of for Non-insulin-dependent diabetes1-4/oletf) by a whole-genome search in 160 F2 progenies obtained by mating the OLETF and the Fischer-344 (F344) rats. Our present investigation was designed to identify and characterize novel QTLs affecting NIDDM by performing a genome-wide linkage analysis of genes for glucose levels and body weight and analysis for gene-to-gene and gene-to-body-weight interactions on an improved genetic map with a set of 382 informative markers in the 160 F2 progenies. We have identified seven novel QTLs on rat Chrs 1 (Nidd5 and 6/of), 5 (Nidd7/of), 9 (Nidd8/of), 12 (Nidd9/of), 14 (Nidd10/of) and 16 (Nidd11/of) which, together with the Nidd1-4/of, account for a total of approximately 60% and approximately 75% of the genetic variance of the fasting and postprandial glucose levels, respectively, in the F2. While the OLETF allele corresponds with increased glucose levels as expected for the novel QTLs except Nidd8 and 9/of, the Nidd8 and 9/of exhibit heterosis: heterozygotes showing significantly higher glucose levels than OLETF or F344 homozygotes. There are epistatic interactions between Nidd1 and 10/of and between Nidd2 and 8/of. Additionally, our results indicated that the Nidd6 and 11/of could also contribute to an increase of body weight, and that the other five QTLs could show no linkage with body weight, but Nidd8,9, and 10/of have an interaction with body weight.

PMID:
10051320
DOI:
10.1007/s003359900982
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center