Format

Send to

Choose Destination
Nat Struct Biol. 1999 Feb;6(2):117-23.

Folding intermediates of SNARE complex assembly.

Author information

1
The Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.

Abstract

SNARE (soluble NSF attachment protein receptor) proteins assemble into a stable complex essential for vesicle-membrane fusion. To further understand SNARE function we have used solution nuclear magnetic resonance (NMR) spectroscopy to characterize three assembly states of a yeast SNARE complex: first, the 'closed' conformation of Sso1; second, the binary complex of Sso1 and Sec9; and third, the ternary complex of Sso1, Sec9 and Snc1. Sec9 and Snc1 are unstructured in isolation. Sso1 likely consists of a four helix bundle formed by part of the C-terminal Hcore domain and the N-terminal H(A)H(B)H(C) domain, and this bundle is flanked on both sides by large flexible regions. Sso1 switches to an 'open' state when its Hcore domain binds Sec9. Conformational switching of the Hcore domain, via H(A)H(B)H(C), may provide a key regulatory mechanism in SNARE assembly. Formation of binary and ternary complexes induces additional alpha-helical structure in previously unstructured regions. Our data suggest a directed assembly process beginning distal to the membrane surfaces and proceeding toward them, bringing membranes into close proximity and possibly leading to membrane fusion.

PMID:
10048921
DOI:
10.1038/5803
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center