Format

Send to

Choose Destination
Photochem Photobiol. 1999 Feb;69(2):141-7.

Inhibition of UV-induced immune suppression and interleukin-10 production by plant oligosaccharides and polysaccharides.

Author information

1
Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA. fstrickl@notes.mdacc.tmc.edu

Abstract

Application of Aloe barbadensis poly/oligosaccharides to UV-irradiated skin prevents photosuppression of delayed-type hypersensitivity (DTH) responses in mice. We tested the hypothesis that these carbohydrates belong to a family of biologically active, plant-derived polysaccharides that can regulate responses to injury in animal tissues. C3H mice were exposed to 5 kJ/m2 UVB from unfiltered FS40 sunlamps and treated with between 1 pg and 10 micrograms tamarind xyloglucans or control polysaccharides methylcellulose or dextran in saline. The mice were sensitized 3 days later with Candida albicans. Tamarind xyloglucans and purified Aloe poly/oligosaccharides prevented suppression of DTH responses in vivo and reduced the amount of interleukin (IL)-10 observed in UV-irradiated murine epidermis. Tamarind xyloglucans were immunoprotective at low picogram doses. In contrast, the control polysaccharides methylcellulose and dextran had no effect on immune suppression or cutaneous IL-10 at any dose. Tamarind xyloglucans and Aloe poly/oligosaccharides also prevented suppression of immune responses to alloantigen in mice exposed to 30 kJ/m2 UVB radiation. To assess the effect of the carbohydrates on keratinocytes, murine Pam212 cells were exposed to 300 J/m2 UVB radiation and treated for 1 h with tamarind xyloglucans or Aloe poly/oligosaccharides. Treatment of keratinocytes with immunoprotective carbohydrates reduced IL-10 production by approximately 50% compared with the cells treated with UV radiation alone and completely blocked suppressive activity of the culture supernatants in vivo. The tamarind xyloglucans also blocked UV-activated phosphorylation of SAPK/JNK protein but had no effect on p38 phosphorylation. These results indicate that animals, like plants, may use carbohydrates to regulate responses to environmental stimuli.

PMID:
10048309
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center