Format

Send to

Choose Destination
J Neuropathol Exp Neurol. 1999 Feb;58(2):138-52.

In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1.

Author information

1
Department of Pathology, Vancouver General Hospital and the University of British Columbia, Canada.

Abstract

Increased lymphocyte traffic across an altered blood-brain barrier (BBB) is a prominent and early event in inflammatory and immune-mediated CNS diseases. The factors that control the entry of lymphocytes into the brain have not been fully elucidated. In this study, primary cultures of human brain microvessel endothelial cells (HBMEC) were used to investigate the role of endothelial cell (EC) adhesion molecules in the adhesion and migration of peripheral blood T lymphocytes across TNF-alpha treated and untreated monolayers. Adhesion of T cells to unstimulated HBMEC was minimal and few of the adherent cells migrated across the monolayers. Treatment of HBMEC with TNF-alpha augmented adhesion by 5-fold. The binding to activated EC was significantly, but not completely, inhibited by monoclonal antibodies (mAbs) to ICAM-1 and VCAM-1, whereas adhesion to unstimulated EC was blocked by mAb to ICAM-1 but not VCAM-1. Transendothelial migration of lymphocytes increased by up to 30-fold following treatment of HBMEC with TNF-alpha. Migration across activated monolayers, but not across untreated EC, was almost completely blocked by Ab to ICAM-1 and significantly inhibited by Abs to PECAM-1 and E-selectin. VCAM-1 was not utilized during transendothelial migration. Ultrastructurally, pseudopodia from lymphocytes contacted finger-like cytoplasmic projections on EC and eventually penetrated the EC cytoplasm at focal points along the apical surface. Migrating lymphocytes moved either through the EC cytoplasm or between adjacent EC across intercellular contacts. The overlying monolayers showed no evidence of disruption and intercellular junctions appeared intact over the migrated T cells. These studies indicate that adhesion and migration of T lymphocytes across the cerebral endothelial barrier are distinct processes that depend upon the activation state of EC and are controlled by diverse receptor-ligand interactions.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center