Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Feb 26;274(9):5895-900.

Expanded lysine acetylation specificity of Gcn5 in native complexes.

Author information

  • 1Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA.

Abstract

The coactivator/adaptor protein Gcn5 is a conserved histone acetyltransferase, which functions as the catalytic subunit in multiple yeast transcriptional regulatory complexes. The ability of Gcn5 to acetylate nucleosomal histones is significantly reduced relative to its activity on free histones, where it predominantly modifies histone H3 at lysine 14. However, the association of Gcn5 in multisubunit complexes potentiates its nucleosomal histone acetyltransferase activity. Here, we show that the association of Gcn5 with other proteins in two native yeast complexes, Ada and SAGA (Spt-Ada-Gcn5-acetyltransferase), directly confers upon Gcn5 the ability to acetylate an expanded set of lysines on H3. Furthermore Ada and SAGA have overlapping, yet distinct, patterns of acetylation, suggesting that the association of specific subunits determines site specificity.

PMID:
10026213
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center