Format

Send to

Choose Destination
Infect Immun. 1999 Mar;67(3):1386-92.

Role of iron in Nramp1-mediated inhibition of mycobacterial growth.

Author information

1
Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA. zwilling.1@osu.edu

Abstract

Innate resistance to mycobacterial growth is mediated by a gene, Nramp1. We have previously reported that Nramp1 mRNA from macrophages of Mycobacterium bovis BCG-resistant (Bcgr) mice is more stable than Nramp1 mRNA from macrophages of BCG-susceptible (Bcgs) mice. Based on these observations and on reports that show that the closely related Nramp2 gene is a metal ion transporter, we evaluated the effect of iron on the growth of Mycobacterium avium within macrophages as well as on the stability of Nramp1 mRNA. The addition of iron to macrophages from Bcgs mice resulted in a stimulation of mycobacterial growth. In contrast, iron increased the capacity of macrophages from Bcgr mice to control the growth of M. avium. When we treated recombinant gamma interferon (IFN-gamma)-activated macrophages with iron, we found that iron abrogated the growth inhibitory effect of IFN-gamma-activated macrophages from Bcgs mice but that it did not affect the capacity of macrophages from Bcgr mice to control microbial growth. A more detailed examination of the effect of iron on microbial growth showed that the addition of small quantities of iron to resident macrophages from Bcgr mice stimulated antimicrobial activity within a very narrow dose range. The effect of iron on the growth inhibitory activity of macrophages from Bcgr mice was abrogated by the addition of catalase or mannitol to the culture medium. These results are consistent with an Fe(II)-mediated stimulation of the Fenton/Haber-Weiss reaction and hydroxyl radical-mediated inhibition of mycobacterial growth.

PMID:
10024586
PMCID:
PMC96472
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center