Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurosci Biobehav Rev. 2015 Jan;48:22-34. doi: 10.1016/j.neubiorev.2014.11.003. Epub 2014 Nov 11.

Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses.

Author information

  • 1Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany. Electronic address: e.cieslik@fz-juelich.de.
  • 2Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany.
  • 3Institute of Neuroscience and Medicine (INM-1) Research Centre Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen, University, Pauwelsstraße 30, 52074 Aachen, Germany.

Abstract

The supervisory attentional system has been proposed to mediate non-routine, goal-oriented behaviour by guiding the selection and maintenance of the goal-relevant task schema. Here, we aimed to delineate the brain regions that mediate these high-level control processes via neuroimaging meta-analysis. In particular, we investigated the core neural correlates of a wide range of tasks requiring supervisory control for the suppression of a routine action in favour of another, non-routine one. Our sample comprised n=173 experiments employing go/no-go, stop-signal, Stroop or spatial interference tasks. Consistent convergence across all four paradigm classes was restricted to right anterior insula and inferior frontal junction, with anterior midcingulate cortex and pre-supplementary motor area being consistently involved in all but the go/no-go task. Taken together with lesion studies in patients, our findings suggest that the controlled activation and maintenance of adequate task schemata relies, across paradigms, on a right-dominant midcingulo-insular-inferior frontal core network. This also implies that the role of other prefrontal and parietal regions may be less domain-general than previously thought.

KEYWORDS:

Go/no-go; Meta-analysis; PET; Spatial interference; Stop signal; Stroop; Supervisory attentional system; fMRI

PMID:
25446951
PMCID:
PMC4272620
DOI:
10.1016/j.neubiorev.2014.11.003
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center