Format

Send to

Choose Destination
PLoS One. 2010 Aug 6;5(8):e11982. doi: 10.1371/journal.pone.0011982.

The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA.

Author information

1
New England Biolabs, Ipswich, Massachusetts, United States of America.

Abstract

BACKGROUND:

MBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins serve as interpreters of DNA methylation, an essential epigenetic mark. It is unknown whether MBD5 or MBD6 also bind methylated DNA; this question has interest for basic research, but also practical consequences for human health, as MBD5 deletions are the likely cause of certain cases of mental retardation.

PRINCIPAL FINDINGS:

Here we report the first functional characterization of MBD5 and MBD6. We have observed that the proteins colocalize with heterochromatin in cultured cells, and that this localization requires the integrity of their MBD. However, heterochromatic localization is maintained in cells with severely decreased levels of DNA methylation. In vitro, neither MBD5 nor MBD6 binds any of the methylated sequences DNA that were tested.

CONCLUSIONS:

Our data suggest that MBD5 and MBD6 are unlikely to be methyl-binding proteins, yet they may contribute to the formation or function of heterochromatin. One isoform of MBD5 is highly expressed in oocytes, which suggests a possible role in epigenetic reprogramming after fertilization.

PMID:
20700456
PMCID:
PMC2917364
DOI:
10.1371/journal.pone.0011982
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center