Send to

Choose Destination
Health Phys. 2010 May;98(5):717-27. doi: 10.1097/HP.0b013e3181d26da1.

Detection of premature segregation of centromeres in persons exposed to ionizing radiation.

Author information

Faculty for Applied Ecology Futura, Singidunum University, 11000 Belgrade, Serbia.


We have analyzed the frequency of premature centromeric division (PCD) in medical personnel professionally exposed to low doses of radiation. They had chromosome aberrations (CAs) involving dicentric chromosomes, ring chromosomes, acentric fragments, chromosome breaks, and chromatid breaks. The study included 30 exposed subjects and 23 controls who were each analyzed by a conventional cytogenetics procedure and subsequently by fluorescent in situ hybridization (FISH). The latter was applied particularly in order to verify PCD in a specific chromosome (chromosome 18) in both metaphases and interphase nuclei. The results revealed a significant difference (p < 0.001) in frequencies between the two groups (exposed and controls) for all the observed variables (CAs), metaphases with PCD (MPCD), total number of chromosomes with PCD (TPCD), number of PCD metaphases in acrocentric chromosomes (MAPCD), and the total number of acrocentric chromosomes with PCD (TAPCD). The doses of ionizing radiation absorbed by the subjects' bodies were measured with thermoluminescent dosimeters once a month during the duration of occupational exposure. They were expressed in mSv, as mean annual effective doses for the period of exposure. The Spearman rank test showed a high positive correlation between total life effective dose and frequency of CAs and PCD. Based on the results obtained in this study, we suggest that PCD, as a phenomenon manifesting chromosomal instability (CIN), should be considered as a suitable cytogenetic biomarker for individuals occupationally exposed to ionizing radiation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center