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Abstract

Powerful specialized software is essential for managing, quantifying, and
ultimately deriving scientific insight from results of a microarray experiment.
We have developed a suite of software applications, known as TM4, to support
such gene expression studies. The suite consists of open‐source tools for data
management and reporting, image analysis, normalization andpipeline control,
and data mining and visualization. An integrated MIAME‐compliant MySQL
database is included. This chapter describes each component of the suite and
includes a sample analysis walk‐through.
Introduction

The Human Genome Project was envisioned as a grand endeavor that
would change biology by providing a catalog of genes in humans and other
model organisms. Although a large number of genome sequencing pro-
jects, including that of the human genome, have been declared finished, the
collection of the sequence itself has not fundamentally altered our ap-
proach to understanding biological systems. Rather, it has been the devel-
opment of techniques and technologies that allow us to analyze patterns of
expression for sets of genes, proteins, or metabolites approaching the total
number that are active in an organism at any given point in time.

Since thei r intro duction in 1995 ( Lipshu tz, 1995 ; Schena, 1995), DNA
microarrays have matured significantly to become the most widely used
technique for the analysis of global patterns of expression and represent a
technology that is now used routinely as a means of generating testable
hypotheses prior to other studies. DNA microarrays consist of an arrayed
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collection of probes bound to a solid substrate that are used to interrogate
the levels of gene expression using hybridization to labeled nucleic acids
and detection of those hybridization events. Although microarray technol-
ogy is still evolving, the development of robust and reliable commercial
platforms, combined with a significant decrease in the cost of an assay, has
resulted in an explosion of gene expression data. The challenge of doing an
expression profiling experiment is no longer in the generation of data, but
rather in effectively capturing the information and using it to explore the
biology of the systems under study.

In that regard, the role of software in a study involving microarrays
cannot be overstated. Specialized tools are available to complement the
experimental procedure and subsequent data analysis. Data management
software is used to capture vital information describing the laboratory
portion of a microarray experiment. Scanned microarray slides are pro-
cessed and quantified using image analysis software. Normalization utilities
ready data for comparisons and further analysis. Data mining and visuali-
zation tools can then help explore data from many perspectives. When used
together, such software becomes a system to maximize the utility of the
microarray experiment and gain better insight into the biology of interest.

We have developed a suite of software applications to support gene
expression studies. This suite, called TM4, consists of a comprehensive set
of tools that allow users to collect, manage, and effectively analyze data
from microarray experiments. This chapter describes the TM4 suite and
each of its components. The chapter concludes with an example analysis
using a real data set and several analysis techniques.

The four major applications of TM4 are Madam, Spotfinder, Midas, and
MeV. Each application in the suite is publicly and freely available. This
includes the source code, which is OSI certified as open source under the
artistic license (http://www.opensource.org/licenses/artistic‐license.php).

Madam is the primary data entry, tracking, and reporting system of TM4.
A series of data entry forms provide users with an organized method of
recording their experimental parameters and data. Query and reporting tools
present important data on a variety of entities, such as a single hybridization
or an entire study. This application also serves as a repository for other tools
in the data management and reporting realm. These include a polymerase
chain reaction (PCR) scoring and microtiter plate loading utility, a study
design tool, and a free‐form SQL query window. Madam works closely in
conjunction with a MIAME‐compliant relational database to carry out
its functions. The role of such a database is described elsewhere (Troein
et al., 2006).

Spotfinder is amultichannel image analysis tool. This application provides
the means to load the output of a microarray scanning operation—typically a

http://www.opensource.org/licenses/artistic-license.php
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pa ir of 1 6‐bit tagged image format file (TIFF) images (Timlin, 2006). Semi-
automatic grid construction and several methods to adjust the placement of
each grid cell manually allow for accurate spot detection. The intensity of each
spot can then be quantified and written to an output file along with related
s pot pa ra me te rs a nd fl ag s ( Minor, 2006). A number of quality control displays
are available, helping users detect systemic issues in slide production.

Midas is a normalization and filtering tool used to process raw data output
from Spotfinder and prepare it for further analysis and data mining. Users
create a project file, chaining together multiple normalization, filtering, and
quality control (QC) modules, using an intuitive graphical workflow builder.
The input options provide ways to consistently process single, paired, or whole
studies worth of raw expression data. An intuitive graphing system illustrates
the effects of normalization with a variety of detailed plots. These graphs can
be embedded in a Midas summary report, a pdf‐formatted file that also
contains a description of the data processing procedure used.

MeV is the mai n da ta analys is and visua lization tool of TM4. Users can
load raw or normali zed data from a vari ety of input file types. A broad
range of algor ithms is availabl e, including those for clus tering, classi fica-
tion, and statistical tests. The intuiti ve graphi cal inte rface simplifies navi-
gation between algor ithm results. An inte grated scriptin g interfac e and
XML ‐ based format pro vides a means to a nalyze data sets in a regi mented
and reprod ucible fashion.

Although these applicat ions were desig ned with interconn ectivity in
mind , each piece can be us ed indepen dently of the others . Asid e from the
.mev form at of TM4 (tab‐ de limited text with standar dized colum n he aders
and comm ent rows), severa l other popular input a nd output formats are
suppo rted. While origin ally de signed for two ‐ dye fluoresce nt microar ray
systems , TM4 has been expand ed to sup port other technol ogies, such as the
Affym etrix Genec hip platform (Dalma ‐Weis zhauz et al. , 2006).

A Sour ceForge web site ( http:// sourcef orge.net /project s/tm4 ) serves as
the central code repository for TM4. This site also hosts the application
downloads, user mailing lists, and discussion forums. The TM4 develop-
ment team actively provides technical support via email. System require-
ments for each application are detailed in the documentation included with
the download. The entire TM4 suite, including software, documentation,
and sample data, can be downloaded from http://www.tm4.org.

The TM4 suite was originally developed at The Institute for Genomic
Research, under the direction of principal investigator Dr. JohnQuackenbush.
Grants to Dr. Quackenbush for TM4 development were provided by The
National Cancer Institute, The National Science Foundation, The National
Heart, Lung and Blood Institute, and the NHLBI’s Programs for Genomics
Applications (PGA). Details regarding the ongoing development of TM4
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and the teams responsible are available at the aforementioned SourceForge
site. Beyond the main TM4 development team, many organizations and
individuals have contributed to this open source project. Their contributions
and affiliations are listed in the documentation for each application. The
development of TM4 continues through collaborative efforts of groupsworld-
wide, but with work now concentrated at three primary sites: John Quacken-
bush and his group at the Dana‐Farber Cancer Institute and Harvard School
of Public Health; members of the Pathogen Functional Genomics Resource
Center’s microarray software group at The Institute for Genomic Research;
and Roger Bumgarner and his group at the University of Washington.
MADAM

Madam (also referred to as MADAM) is the data manager of TM4. It
handles the tasks of data entry, tracking, and reporting while serving as an
interface to a relational microarray database. Madam offers a series of data
entry pages, which provide the user an easy method to load the database
with information about their microarray experiments. Several report types
display vital information about various stages of the experiment and let the
user track the progress. Madam also houses several distinct tools with data
management functions.

In addition to these roles, Madam is also capable of generating output in
the MicroArray Gene Expression Markup Language (MAGE‐ML) format.
The submission of microarray data to public repositories is often required
when publishing the results of amicroarray study.MAGE‐ML is the standard
format formicroarray data exchange and submission. If the user populates the
database via the data entry pages correctly,Madam can generateMAGE‐ML
files that describe the entire microarray experiment. Two popular microarray
data repositories are ArrayExpress (Brazma et al., 2003, 2006) and Gene
Expression Omnibus (GEO; Barrett and Edgar, 2006; Edgar  et al., 2002).

Madam is distributed with a MIAME‐compliant relational database and
the MySQL database platform. The database is a critical component for the
operation of this software and nearly all of the functions of Madam involve
interactions with the database in some manner. Madam cannot function
without the database. Accordingly, Madam has features that assist the user
with MySQL database installation and administration, including the creation
of user accounts and Java Database Connectivity (JDBC) configuration.

Madam was designed with two‐channel spotted arrays in mind, but
efforts are currently underway to expand the interface and underlying
database to accommodate other platforms as well, including Affymetrix
GeneChips. Detailed operating instructions for this application can be
found in the program manual included with the software distribution.
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MAD: The Microarray Database

The database includes over 60 tables that store information about
nearly every aspect of the microarray experiment. Some tables track the
identities of the genes, clones, and oligonucleotides that compose spotted
arrays and the microtiter plates in which they are located. The slide
geometry is similarly important, including the number of spotted elements
and printing pens, spacing between blocks, and the identities of the plates
used. Each hybridization and the two probes used in each hybridization,
including their origins, are also tracked. Data from outside the microarray
laboratory are also stored, such as postimage analysis expression results in
raw and normalized forms. The database schema (Fig. 1) illustrates each of
the tables and the fields they contain, as well as the links between them.
FIG. 1. Schema of the microarray database, MAD. These tables are used extensively for

every function of Madam.
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Many of these fields store data required by the MIAME (Minimal
Information About a Microarray Experiment) specification (http://www.
mged.org/Workgroups/MIAME/miame.html). The MIAME specification
(Brazma et al., 2001) describes data that are needed to enable the interpre-
tation of the results of a microarray experiment in an unambiguous manner
and to possibly reproduce the experiment. It follows that Madam users
should try to enter information as completely and correctly as possible to
ensure that the MIAME requirements are met. More information about
MIAME can be found elsewhere in this volume.

Although the included database is built for the MySQL DBMS, other
relational databases can be used. Madam has been connected to both
Sybase and Oracle DBMS.

Madam Interface

The main Madam interface (Fig. 2) consists of four parts that are
contained within an application window. A menu bar runs across the top
of the window and provides access to the File, Entry, Tools, and Help
menus. The Help menu contains the Help Manual menu item, a detailed
and interlinked guide to the Madam interface, and all of the functions of
the application. The File, Entry, and Tools menus contain items relevant
to specific aspects of Madam and are described in subsequent sections.

The Navigation Panel is located on the left side of the interface. It
consists of a set of tabs: Entry, Edit, Report, Application, and MAGE‐ML.
These correspond to each of Madam’s major functions. Selecting a tab will
display relevant controls for that function in the area immediately below
the tabs.

The working panel is found on the right side of the interface. This is the
area where most of the activity is based; the content will change depend-
ing on the task the user is working on. It can display forms for data entry
and MAGE‐ML writing, HTML‐based reports, and some interfaces for
supplementary tools.

At the bottom of the interface is the event log. This area reports
important system messages, errors, and significant user activities and is
persistent through all the aspects of the software.

Data Entry and Editing Pages

The task of loading data into the microarray database is facilitated
through the use of data entry pages of Madam. Each page corresponds to
a specific entity, such as a labeled probe or a glass slide. The data entry
pages are active by default when Madam is started. To navigate here at any
time, the user can click on the Entry tab in the Navigation Panel. When the

http://www.mged.org/Workgroups/MIAME/miame.html
http://www.mged.org/Workgroups/MIAME/miame.html


FIG. 2. Madam graphical user interface. Data entry buttons are visible in the Navigation

Panel on the left side. The Working Panel, on the right, is currently displaying the

Hybridization entry form. The Event Log at the bottom records recent activity and displays

system messages.
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Entry tab is selected, the Navigation Panel will display a flowchart of sorts,
consisting of ordered buttons. Each of these buttons corresponds to one of
the data entry pages and the layout of the buttons mimics the typical order
in which each page will be used. Clicking on one of these buttons will bring
up the appropriate data entry page form in the Working Panel. Another
method to navigate to a data entry page is by selecting the desired page
from the list contained in the Entry menu of the main menu bar.

Every data entry page shares several common features designed to
simplify the process of filling out the form. All fields have a descriptive
label alongside them to indicate the role of the field. Each entry field
corresponds to a table and field combination in the database and this
information is sometimes valuable to the user. By holding the mouse
pointer over the field label for a moment and reading the tooltip, the user
can learn both the table and the field name used in the database to store
data entered in that part of the form.
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Real‐time validation is in effect and fields whose contents are not valid are
noted by a red color, either within the text field itself or by a red element next
to the input area of the fields. The user can view the reason by holding the
mouse pointer over the field for amoment and reading the tooltip. Somefields
are colored when the form is first displayed. This is because those fields are
required; because they do not have values by default, they fail the validation
for this reason.

Many of the drop‐down lists in Madam accept input from the user
either by clicking one of the entries of the list or by typing text into the
field. Typically these lists are populated with data directly from the data-
base and as such they can become quite long. The user can type a few
characters into the field and hit the enter key, thus removing all items from
the list that do not start with the characters already in the field.

At the bottom of every form is a text area for comments and Clear and
Enter buttons. The Enter button indicates that the user is finished entering
data in the form and wants to proceed to the next step. It is important to note
that theEnter buttonwill be disabled if any fields on the formare not currently
valid. Clicking the Enter button brings up a confirmation dialog. This dialog
displays a table with each field and the corresponding value noted. The user is
given the opportunity to review the contents before beginning the upload of
these data. If there are any errors, clicking the Cancel button will return the
user to the entry page. If everything is as desired, clicking the Submit button
will start the process of uploading data into thedatabase. Theprogress bar and
descriptive text messages in the dialog will indicate the status of this process.

The Study entry page captures information about a series of related
microarray hybridizations (experiments) and the variables and experimen-
tal parameters involved. The Probe Source page is used to upload details
about the biological source of a labeled probe used in hybridization. With
this data, the Probe page can be used to enter information describing the
probe itself, including the fluorescent dye used.

Describing the design of a microarray, from the geometry of the spots
to the identities of each array element, is perhaps the most complex data
entry task in Madam. This information is loaded using a page called Slide.
To simplify the task, there are three different methods that can be used to
create a new slide entry in the database. The user is free to choose the most
appropriate method.

Two probes and one slide can be selected to form hybridization. These
selections and details about the protocol and chemistry of the hybridization
can be entered using the Hybridization page. The next page, Scan, is ready
to record the settings used when the aforementioned slide is scanned. This
page also records information about the TIFF image files that are produced
by the scanner as output.
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The Expression page is useful for uploading the raw intensities and flags
calculated for each spot during the image analysis phase. This page requires a
.mev format expression file as input. Information about normalization and
data processing can be entered using the Analysis page, but the focus of this
page is changing as the storage requirements for normalized and analyzed
data evolve. Future releases of the software will reflect the current standards.

The New Organism button is set apart from the rest of the data entry
buttons, as it is not used commonly. TheNew Organism entry page appears
in a separate window when invoked and can be used to insert a new
organism into the database. Selecting the appropriate organism is impor-
tant when defining the source of a labeled probe or uploading plates using
the PCR Score tool, described later.

Once data are uploaded, it cannot be altered using these data entry
pages. Madam instead offers a set of data‐editing pages. These can be
accessed by clicking on the Edit tab of the Navigation Panel. Doing so will
bring up a set of list boxes where the user can select the name of the entity
to edit. Five options are available: Study, Probe Source, Probe, Slide, and
Experiment. Selecting a name and clicking the arrow next to it will display a
data‐editing form in the Working Panel. These forms function in the same
manner as the data entry forms, including real‐time validation. The main
difference is the replacement of the Enter button with the Edit button.
Clicking Edit will bring up a confirmation dialog nearly identical to the data
edit confirmation. Only the fields that have changed will be displayed and
both the current and original values will be shown alongside the field
names. Clicking the Submit button in this dialog will begin the process of
updating the database with these edited data.
Report Generation

Through the reporting interface of Madam, a user can view and export
HTML‐based reports that encapsulate vital details about entities that were
uploaded using the data entry pages. The user can click on the Report tab
of the Navigation Panel at any time to bring up the report selection
interface. The Navigation Panel will display five sets of controls for select-
ing study, experiment, slide, slide type, or probe reports. For each type
there is a drop‐down list and a View button. To generate a report of a given
type, the user should select the appropriate entity identifier from the drop‐
down list and click the View button. The selected report is shown in the
Working Panel.

Each time a report is generated its name will be added to a list near the
bottom of the Navigation Panel. This list can be used to track the history of
viewed reports and quickly recall one by clicking on the name. At the bottom
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of the panel there are four buttons. The Save button can be used to output the
currently visible report as an HTML file for later viewing in a web browser.
The Print and Print Preview buttons both send the visible report to a printer;
the latter also shows an image approximating the report’s printed appearance.
Finally, the Clear button resets the entire report interface.
MAGE‐ML Writing

MAGE‐ML is a standardized XML format for microarray data that has
gained wide acceptance in the community. It can be used to distribute
microarray descriptions and results to colleagues or for submissions to
public microarray databases. Submitting microarray data to public data-
bases such as ArrayExpress or GEO is important when publishing the
results of microarray experiments, thus giving others the ability to view
your data sets and potentially reproduce the results.

Madam provides a means of writing MAGE‐ML files. To do this
successfully, the user must first make sure all their data have been entered
accurately and as completely as possible using the data entry pages. Miss-
ing data can cause problems in the MAGE‐ML files that are produced. The
MIAME‐compliant database that is associated with Madam is capable of
storing the necessary information to produce complete MAGE‐ML files.

The MAGE‐ML interface is invoked by clicking on theMAGE‐ML tab
in the Navigation Panel. The panel will then display a tree containing the
various objects that can be encoded into the MAGE‐ML format. Selecting
an object from the tree will bring up a form in the Working Panel that is
specific for each object type. The user can fill in this form in the same
manner as the data entry pages. Once all the fields pass the validation test,
the MAGE‐ML button at the bottom of the form can be clicked, thus
starting the file writing process.

Each object that can be written requires the user to describe the people
involved with the project, from the experiment itself to the file generation
and submission. These people can be selected from a list and labeled with a
role. The list is populated by using the Preference menu item located in the
File menu. Names, organizations, and contact information for all the req-
uisite people can be stored through this interface and retrieved from within
the MAGE‐ML writing forms.

Two chapters in this volume describe in more detail the importance of
MAGE‐ML and how it is used in the context of submissions to public
microarray databases. Further information about the MAGE‐ML object
model and file format can be found at http://www.mged.org/Workgroups/
MAGE/mage.html.

http://www.mged.org/Workgroups/MAGE/mage.html
http://www.mged.org/Workgroups/MAGE/mage.html
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Related Tools

Madam serves as a home for several distinct tools that are involved for
some data entry, retrieval, and management tasks. Although each part can
operate outside the context of Madam, there are several advantages when
they are bundled together. Perhaps the most important is the utility of
having Madam regulate the database administration tasks. As such, it is not
necessary for any of these smaller tools to try to establish a new database
connection or to start and stop the database software. Having all the tools
accessible from one location is also convenient for users and facilitates
interactivity between each piece.

These six tools are accessible from the Application tab of the main navi-
gation pane. The user can click the button that corresponds to the desired tool
to launch it. An alternative is to use the Toolsmenu from the main menu bar
and select the appropriate tool from the list. Each of these tools included with
Madam is described.

ExpressConverter handles file conversion operations for the TM4 suite.
It accepts a variety of common scanner input formats, including GenePix
and Agilent, and converts them to the .mev format. For other file types,
ExpressConverter offers a customizable file converter that allows the user to
describe their tabular text format and then convert files of that type to .mev.
Annotation files can also be created using this customized converter to
complement the expression files.

ExptDesigner is a tool that can help plan a series of microarray hybri-
dizations (Ayroles and Gibson, 2006; Neal and Westwood, 2006). Loop and
reference experiment designs are supported. The user begins by selecting
the probes from the database that are involved in these hybridizations.
These probes will be available for selection in the design view panel, an
interface that consists of two visual tools. Users can create hybridization by
drawing a directional arrow from one probe to the other in the network
view or by clicking a square corresponding to the two desired probes in the
matrix view. Each hybridization is then added to a list that can be exported.

PCR Score is an application designed to create and manage data asso-
ciated with the microtiter plates used for microarrays (Eads et al., 2006).
Users can upload information describing the contents of 96‐well plates,
including those containing oligonucleotides and PCR products. In the latter
case, a scoring interface allows the user to indicate the success of the PCR
reactions. The 96‐well plates can then be combined into the 384‐well plates
often used for array printing.

Mabcos is a microarray bar‐coding system. This application prints bar
codes for several types of laboratory objects, including freezers and micro-
titer plates. Series of bar codes can be scanned, tracking the probes, plates,
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or slides involved in an experiment. Bar‐code scanning helps ensure that
the microarray printing is performed correctly. Data can be transferred
from a traditional scanner or a PalmOS‐based device.

Miner is a tool that writes .mev format expression files from data in the
database. The user can specify an Experiment Name that corresponds to
the hybridization for which to retrieve data. A filter based on PCR results
and a buffering option for partial files are available.

TheQueryWindow is an interface for submitting free‐form SQL queries
directly to the database. This supplements the data entry, editing, and
reporting functions ofMadam by providing a finer level of control over data.
Users who are familiar with the schema of the database and the SQL syntax
can perform a wide range of operations, including insertions and deletions.
Query results and the corresponding SQL can be saved to text files.

Administration Tools

The administration aspects of Madam are handled by a related applica-
tion called the Madam Administrator. This program can be launched from
the same directory as the main Madam executable. Some common admin-
istrative tasks that can be performed include the creation or removal of
local array databases, changing the JDBC connection settings used by
Madam to communicate with the database, and changing the values that
appear in some parts of Madam’s data entry pages and MAGE‐ML forms.
Details of these operations are found in the program manual included with
the Madam distribution.
Spotfinder

Image processing is a key component of the microarray experiment
(Minor, 2006; Timlin, 2006). Each two‐color spotted microarray slide will
typically produce two gray‐scale 16‐bit images in TIFF format. Each image
corresponds to a single labeling dye such that the two images complement
each other spatially and need to be processed in parallel. The microarray
TIFF image is the end product of the portions of the microarray experiment
conducted in the laboratory.

Despite being digital media, in essence, and storing all necessary infor-
mation about the conducted experiment, the image file is not a data set ready
for data analysis (Minor, 2006). The goal of image analysis is to digitize
microarray image files and produce output data sets for each slide. These
data sets can then be normalized and used as input for clustering, visualiza-
tion, and statistical analysis tools. The image processing software itself is a
specialized tool that provides parallel analysis of microarray TIFF images.
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Critical steps include the definition and digitization of spots, calculation of
local background, and reporting intensities into output data files.
Image Analysis Goals

The challenge is spot detection and digitization or extraction of intensities.
The spots on an array correspond to the genes printed on the slide during the
printing step. The hybridization procedure attaches two fluorescent markers
on the same target for every spot. After slide scanning at two different
excitation wavelengths, two separate images are generated, one for each
fluorescent marker. It is commonly accepted to refer to these two images
and data extracted from them as the two channels of the microarray experi-
ment. The fluorescent dye signal is expected to be proportional to the overall
efficiency of the hybridization as well as the gene expression level. By mea-
suring the integrated signals from both dyes on every spot, we are able to
approximate the level of gene expression for both conditions of hybridization.

Two main problems must be addressed before spot intensities can be
measured: spots have to be localized spatially on the image and a local
background value has to be estimated for every spot. The problem of individ-
ual spot locations cannot be solved globally for the entire image. Rather, a
good approach is to proceed locally by splitting the image area into subarrays,
each of which consists of a group of spots or even individual spots.

Background correction of the measured microarray spot intensities is a
procedure used to derive true values from raw experimental data. This
correction aims to remove the additive components from multiple sources:
substrate background, cross‐talk from the other channel dye, nonspecific
hybridization response, and so on. Because a spotted microarray image has
a nonuniform background distribution over the whole image area, local
background correction becomes highly desirable. It is commonly accepted
that the background estimated locally for every spot is the best method, if
correction is desired. Background correction normally results in expansion
of the dynamic range of data for both intensities and ratios; the outcome is
more prominent for low‐intensity spots and almost invisible for highly
expressed genes. It should be viewed as favorable data transformation, as
it increases resolution on the expression ratio scale and makes it easier to
distinguish the differences between genes with close expression ratios.

Background correction may result in some negative intensity values.
This can occur when the local background estimate is larger than the spot
intensity, as it is for some weak spots (‘‘black holes’’). These spots can be
filtered out automatically by applying the signal‐to‐noise ratio criteria.
Realistically, such filtering will not result in data loss, as the weak spots
cannot be considered as reliable data points in downstream analysis.
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Approaches

There are a few approaches to solving the spot location problem. All of
them utilize a known geometrical pattern of printed arrays; arrays typically
consist of subgrids arranged in meta‐rows and meta‐columns. The subgrids
themselves consist of the spots that form rows and columns in a rectan-
gular pattern, allowing simple description by a few parameters. A less
common geometry of a hexagonal or ‘‘orange packing’’ layout of spots is
also possible and can be described by a small number of parameters. Using
this, one method of determining spot locations is to apply a predefined grid
to the image that can be aligned manually or automatically in subsequent
steps. A user‐assisted semiautomatic grid alignment is also an option.
Another solution is not to use a grid explicitly, but apply an automatic or
semiautomatic procedure for spot positioning based on the geometric
pattern of the printed spots. Two examples of this include the spot‐finding
procedure based on seeded region growing algorithm (Yang et al., 2002b)
or Fourier transform based procedure (Gaidukevitch et al., 2000).

There are notmanyways to estimate the local background around a spot.
The most popular method is based on the assumption that the background
surrounding a spot is the same as the background in the spot itself. Using the
rectangular area around the spot for local background estimation by this
method is possible if a grid has been defined. The only caveat of this method
is the possible overestimation of the background when the pixels closest to
the spot are considered part of the background. This systematic bias can be
avoided by not involving pixels from the area immediately surrounding the
spot in the background calculation. While this method, with some modifica-
tions, is widely used bymany image analysis tools, one can argue that the real
background in the spot area may stem from the nonspecific hybridization or
nonlabel fluorescence signal from the target area. Measurement of nonhy-
bridized or nondye hybridized sites has been suggested as an experimental
method for the background estimate (Yang et al., 2001) and, on occasion, has
been used effectively in practice (Johnston et al., 2004).

Spotfinder 3

Since its first release in 1999, Spotfinder has passed through many up-
grades and version changes. Spotfinder 3.0, released in 2004, was a signifi-
cant redesign of the traditional architecture: a multiplatform application
allowing the analysis of arrays containing more than two dyes. Currently,
Spotfinder executables are available for three major desktop platforms:
Windows, Linux, and Mac OSX. Due to the large size of the TIFF images
that are usually analyzed (often 20 MB or more), it is recommended that
Spotfinder be run on computers with at least 256 MB of RAM and a CPU
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clock speed of at least at 800 MHz. A 16‐MB video card (32þ is better) is
strongly desirable for Windows desktops. The latest release, Spotfinder
3.1.0, accepts both 8‐ and 16‐bit TIFF images, stored in separate files or
one multi‐TIFF image file. Data output is generated as tab‐delimited text
files (.mev) and platform‐independent binary files for grids (.sfg) and whole
raw data sets (.sfd).

Spotfinder has an intuitive graphical user interface (GUI)with amenu bar
on top, dialog tool box on the lower left side, and a number of tab pages in the
center of the main program window (Fig. 3). The menu bar contains Image,
Grid, Data, and Settings menus. The collection of tabs gives the user access
to the pages: General, Overlay, Analysis, RI plot, Data, and QC view. The
Analysis page is the most functionally rich element of the Spotfinder GUI; all
user activities in Spotfinder related to grid design and alignment are focused
on theAnalysis page. The dialog tool box is a control for alternative selection
of several dialogs. Gridding and Processing has the controls for setting the
parameters for automatic grid adjustment and choosing a segmentationmeth-
od. The Post‐Processing dialog can be used for QC filter settings and for
turning on/off the background correction algorithm. The Cell Editor dialog
controls can be used to activate theCell Editor for interactive cell selection on
FIG. 3. Spotfinder graphical user interface.
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the Analysis page, RI plot page, or Data page. When active, the Cell Editor
displays the selected spot with its cell shown. TheCell Editor also can be used
to resize and move cells, and to reprocess the selected spot.

General Steps

The following sequence is typical for a grid‐based spot finding procedure
using a local background calculationmethod over the area surrounding each
spot.

Grid Composition

Designing and constructing a new grid requires the entry of several slide‐
specific parameters that are usually determined when the slide is printed.
The user can get this information from the settings log file of the printing
robot or by making measurements directly on the image file using Spot-
finder. Normally the spots on the array are printed in blocks (sometimes
referred to as grids or subgrids). This discussion deals with rectangular
packed grids. The blocks are organized into meta‐rows, which are rows of
grids, andmeta‐columns, or columns of grids. The number of meta‐rows and
meta‐columns on the array is defined by the number of the printing pins in
the X and Y dimensions. Note that all spots in a single block are printed by
an individual pin. The set of parameters needed for grid construction include
the number of pins in X dimension (pinX), the number of pins in Y dimen-
sion (pinY), spot spacing (distance between spots, measured in pixels) in
both X and Y dimensions, and the number of rows and columns in every
block. To measure these parameters on screen, the user can switch to the
Analysis Page and use the mouse pointer to navigate it to any spot on array,
making a reading of the mouse cursor coordinates at the bottom of the
program window. The initial spot spacing parameter, which defines the
whole grid size, can be set with significant tolerance. As a result, blocks
may be smaller or larger than the array of spots that they cover; this can be
ignored for the moment.

Grid Expansion and Shrinking

The first step in grid alignment is to move the whole grid set to a desired
position. Thebestway to place the entire grid is to keep track of the upper left‐
most grid at first and use it as an alignment indicator.After the upper left point
of this grid is positioned in place, the spot spacing can be adjusted to fit the
correct grid size. It can be done by applying grid expand, sequentially increas-
ing or decreasing the spot size until each rectangle of the grid has a spot
centered within. The suggested method is to watch only the upper left‐most
grid when applying this procedure to all subgrids on the array.
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Ideally, all pins in the print head are evenly spaced; hence, all printed
blocks should have a consistent offset (George, 2006). However, it is often
found the pins are slightly bent; as a result, the blocks of spots are mis-
aligned relative to each other. After positioning and sizing the upper left‐
most subgrid we can proceed with adjusting the position of the other
subgrids. The automatic grid adjustment procedure can be used to itera-
tively place the remaining subgrids. This procedure uses a mask, of a size
no less than the typical spot size, to calculate the target function for every
block. This mask is assigned to every spot cell and centered. The target
function is defined as the integral of all the pixels in the spot cells under all
the masks in the grid. Every block is moved in small steps to a maximum of
one cell size up, down, left, and right. At every step the integral is calculat-
ed and stored as an element of a two‐dimensional (2D) matrix. After this
has been completed, the 2D matrix is searched for the maximum calculated
integral value. The subgrid is then moved to the position corresponding to
that maximum value. This automatic procedure requires that three condi-
tions are met. First, every subgrid has to be set correctly in size and with the
correct row and column numbers. Second, each subgrid has to be aligned
roughly, within a tolerance of one cell size. Finally, at least half of the spots
in the block should have significant signal (i.e., strong spots) to provide
reliable landmarks to position the subgrid correctly. It is important to note
that this procedure may give unsatisfactory results for subgrids with empty
rows or columns on the edges, that is, the first and last columns or rows.
The automatic grid adjustment can be applied repeatedly, as sometimes it
is necessary to use the procedure a few times to reach sufficient grid
alignment. If repeated applications do not produce satisfactory results,
the only solution is to align the grid manually. The user, in this case, can
use the mouse or keyboard arrow keys to position each subgrid accurately.

Spot Detection

Spot detection, also referred as spot finding or segmentation, is the next
key step of image analysis. The goal of spot detection is to separate spot
pixels from background ones. The image has to be segmented or divided in
two subsets: one including the signal or spot pixels and the other consisting
of the background pixels. A number of methods are widely used for the
segmentation of microarray image spots. It has been shown (Yang et al.,
2001) that the choice of segmentation method applied has no significant
effect on the ultimate results of image analysis. All segmentation methods
used in microarray image processing can be categorized as being either
histogram or shape based. The histogram‐based methods do not take into
account the spatial information about the analyzed spot, such as spot
shape. Instead, they apply a sorting algorithm to the whole set of pixels
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in the cell and set a threshold that separates signal and background pixels
based only on the values of the pixels. Auxiliary input parameters, such as
spot size and spot pixel dynamic range, can be used to facilitate the
histogram segmentation. In contrast, the shape analysis‐based methods
mainly rely on spatial information of the image; they look primarily on
how pixels with high values are grouped together spatially. A few software
tools use a met hod based on a seeded grow ing algor ithm ( Yang et al. , 2001 ,
2002); this is rela ted to the shape ‐ based meth ods.

The original segmentation method implemented in Spotfinder is a
histogram‐based algorithm that expects only a single parameter from the user:
estimated spot size. This method provides good results for images with a low
variation in spot size. However, images can have significant spot size variation
in certain conditions. One cause could be the variation in temperature and
humidity during the slide printing. Spotfinder introduced a segmentationmeth-
od based on the Otsu algorithm (Liao et al., 2001; Otsu, 1979) to address this
problem.Thismethod requires the user to input two parameters:minimumand
maximum spot size on the array. The Otsu method runs through the original
histogram of pixel values and places a threshold dividing the area into two
groups—background and signal. The threshold returned by this method max-
imizes between‐group variance. A third segmentation option in Spotfinder is a
manual method in which the user interactively applies a predefined circle as
mask for spot segmentation.

Spot Digitizing

Following the detection of spot boundaries by the segmentation meth-
od, the next step in image analysis is spot quantitation or digitizing. During
this stage the pixels inside the spot are counted and added together to
calculate the integrated intensity of each spot. The spot mean and median
can also be determined.

The important issue of pixel saturation is addressed at this step.Due to the
natural limitation of the dynamic range, the value of each pixel cannot exceed
the 16‐bit maximum, which is 65,536. If the input fluorescence signal is too
high and exceeds the linear range, the corresponding pixel is assigned the
maximum possible value of 65,536. In principle, the problem can be solved by
rescanning the slide with different settings for sensitivity or scanner detector
power. Doing so can bring all pixel values to a lower range but also may set
low‐intensity spots at the background level. Alternatively, if the percentage of
saturated pixels is not too high, they can just be ignored and a rescan of the
slide can be avoided. The check for saturated pixels is conducted when pixels
inside a spot are analyzed. If any pixel in the spot is saturated at least in one
channel it will be excluded, that is, removed from the spot data set in all
channels. All reported values for the spots—mean, medians, integrated
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intensities, and their standard deviations—are computed after the saturated
pixels are removed. As a measure of this correction the resulting saturation
factor is reported. The saturation factor is defined as the ratio of the non‐
saturated pixels over the original number of pixels in the spot.

Local Background Correction

Because the direct measurement of spot background is not feasible, the
local background estimate is based on some assumption. The simplest way is
to assume that the background in the area surrounding a spot is the same as
inside the spot itself. The local background can then be measured by analyz-
ing the pixels just outside the spot boundary. Normally the local background
is estimated by the median of these exterior pixels. To apply background
correction to integrated intensities, this value must be multiplied by the spot
area and subtracted from the raw integral intensity.

Reported Parameters

Spotfinder reports a number of parameters for each spot that is detected:
integrated intensity, mean, median, total background (integral), back-
ground median, background standard deviation, integrated intensity stan-
dard deviation, mean standard deviation, median standard deviation, flag,
QC score, and p value. These parameters are reported for each channel in
the spot; if it is a two‐dye array there will be two integrated intensities,
etc. Some parameters are reported only once for the spot, independent of
the number of channels. These include spot area, saturation factor, and total
QC score.

Quality Control Parameters

The QC procedure, which analyzes and reports QC parameters, is an
important part of any image processing software. Spotfinder provides a num-
ber of QC parameters: total and individual channel spot QC scores, flags
assigned by theQCfilter, and p values from a two sample t test. Flags assigned
to each spot by the QC filter may change based on the QC filter settings. QC
scores and p values, however, are independent from the QC filter settings.

The QC filter is enabled by default and performs spot shape and signal‐
to‐noise ratio analysis based on the user‐set parameters. The spot shape is
analyzed under the assumption that the ideal spot has to be similar in shape
to a circle. Real spots may have a less circular shape that can become even
more distorted if the detected spot has originated from background fluc-
tuations rather than a true target. The ratio of spot area to spot perimeter is
calculated to check if it is significantly different from the ratio for a perfect
circle of equal size. If the spot ratio deviates from that of the circle by more
than 20% it can be considered a badly shaped spot. The signal‐to‐noise
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ratio check is based on the selected pixel value threshold. The threshold
can be written as

T ¼ aMþ bSD; ð1Þ
where M is local background median, SD is background standard deviation,
and parameters � and � are coefficients and can have values in the range of
[0, 4]. The default settings are �¼ 1, �¼ 1. The spot is considered strong and
will pass this test if more than 50% of the pixels in the spot are higher than
the selected threshold. Any spot that fails on at least one of the criteria will
be flagged as a ‘‘bad’’ spot. Spots that pass these tests are subject to further
scrutiny. The number of pixels in these spots is counted (spot area) and
different warning flags are assigned to spots smaller than 50 and 30 pixels.
The user may choose to disable QC filtering, ending up with an output data
set that has every detected spot flagged as ‘‘good.’’

QC scores will be calculated and reported by Spotfinder, even if the QC
filter is disabled by the user. The QC score has a value between 0 and 1;
higher scores indicate better spot quality. The total QC score for each spot
is the mean of QC scores for that spot from all channels. The QC score for
each channel is calculated as the geometric mean of the shape and the
signal‐to‐noise QC scores for the spot. The shape QC score is calculated in
the same way as it was described earlier, but also including normalization
to the spot size and scaling into the range [0, 1]. The signal‐to‐noise QC
score is defined as the portion of pixels in spot above T, where T is defined
by Eq. (1) with M ¼ 2 and SD ¼ 0.

Visualization of Quality Controls in Spotfinder Views

Spotfinder provides a set of visual displays for graphical presentation of
QC results. The user can navigate to them using the GUI tabs Analysis,
RI plot, Data, and QC view.

As a major hub of the Spotfinder interface, the Analysis page also
graphically displays the immediate results of image processing—the con-
tours of each detected spot are painted in one of two colors depending on
the flag assigned by the QC filter: magenta for good flags (A, B, C, and S)
or green for bad flags (X, Y). The shape and the location of the contour
inside every cell give the user immediate visual information about the
alignment of the cell and the success of spot detection (Fig. 4).

The Spotfinder RI plot page (Fig. 5) with ‘‘diamond plot’’ lines (Sharov
et al., 2004) can be used for quick visual examination of the slide’s ratio and
signal level dynamic range, correctness of background detection, and satu-
ration correction. A ratio‐intensity plot (RI plot), widely used for presen-
tation of microarray data, is the log2(MA/MB) plotted as function of
log2(MA*MB), where MA and MB are spot means in channel A and B,
respectively. Diamond lines indicate the theoretical limits for spots with



FIG. 4. Analysis page shown after whole slide processing is complete. Contour lines are

colored red for good spots and green for bad ones.
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extreme intensities: completely saturated spots at least in one channel are
limited by the right side of the RI plot diamond and spots with zero
intensity in at least one channel are limited by the left side of the RI plot
diamond. Correspondingly, the left‐most tip of the diamond is the location
of spots in which both channels produce zero intensities, and the right‐most
tip of the RI plot is the location of spots with complete saturation in both
channels. None of the spots on the array should be expected outside of the
RI plot diamond. In essence, the RI plot diamond lines are the physical
limits for bit‐depth limitations in one channel on the right side of diamond
and zero measured signal on the left side of the diamond.

TheQCview page allows the user to view the subgrids with individual cell
rectangles colored according to a four‐color scheme. Three colors—yellow,
blue, and gray—are used to indicate spots with measured differential expres-
sion levels above, below, and between two chosen preset levels, respectively.
These two levels of log2(ratio) are preset to 1 and –1, by default, to display
those genes that are up‐ or downregulated by a factor of two or more in blue
and yellow colors, and coloring genes that fall within that range as gray.
They can be changed by the user to visualize the interesting expression ratio



FIG. 5. RI plot view in Spotfinder showing the ratio‐intensity log graph for thewhole analyzed
slide. The four lines forming a diamond are the limits of the log‐ratio plot. Red and blue lines are

the full saturation limits lines in one channel, whereas the other channel has a valid number.

Yellow and green lines are the zero values limit lines at least in one channel.
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profile on the slide. For instance, if the user is looking for fourfold up and
downregulated genes, the values of 2 and –2 should be entered on theQCview
page. The color green is used for bad or undetected spots. Colored cells can be
displayed on QC view in their true positions in the subgrid or combined
together in blocks. In the latter method the area of rectangular blocks is
proportional to the number of cells of a certain color on the subgrid. Relative
amounts of bad/undetected color cells in subgrids are expected to be approxi-
mately the same; therefore, any noticeable increase of green color areas may
indicate poor alignment of that particular subgrid.

Spotfinder Protocol Description

Program Settings

Check the program settings and change them based on the actual slide
type; if the number of channels is changed, it is necessary to close and restart
the program. The user also may change the visualization scale factor
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depending on the image size and available video card memory; it is recom-
mended to keep default settings for the initial use. Use themenu bar to go to
Settings!General Settings. Make sure that the Channel Number is set to 2
for a two‐dye experiment and that the Scale Factor also equals 2.

Image Loading

To load two TIFF images stored in distinct files, select both TIFF files at
once by holding the keyboard Ctrl key, clicking on one file and then on the
other one. For loading TIFF images stored in the same file, select only that
one file to load. Spotfinder automatically detects if the selected file is
encoded in 8‐ or 16‐bit format. The file names are sorted in alphabetic
order for placement in channels A and B for a two‐color array, and A, B, C,
and D for a four‐color array. The output data file columns will follow the
same order. The user may swap the images in channels A and B to change
the order if necessary.

Loading Existing Grid from File

A previously saved grid can be retrieved from the SFG file by clicking
on the Load grid from file option from the Grid menu. The Spotfinder
focus should be switched to the Analysis page by clicking the Analysis tab.
This page is where the user will interact with Spotfinder for grid construc-
tion, alignment, movement, and processing tasks. If any arrays of this same
type have been analyzed previously, load the grid file used previously for
this slide type. The grid would likely involve only a position alignment, as it
has the correct grid size but not necessarily the correct location.

Grid Construction

New array types require the construction of a new grid. The Spotfinder
grid design assumes that the slide was printed by using rectangular pin
(pen) settings. Every distinctive subgrid or block on the slide is printed by
one dedicated pin. The pins are arranged in rectangular pattern such that
the subgrids form meta‐rows and meta‐columns. To design a new grid, go
to the menu Grid!Compose Grid. This will bring up the Grid Design
dialog. In this dialog the user is asked to input eight parameters describing
the geometry of the grid. These parameters are the numbers of meta‐rows
and meta‐columns, the distance between neighboring pins in horizontal
(PinX) and vertical (PinY) dimensions, the number of rows and columns in
each subgrid, and the spot spacing in the horizontal and vertical dimen-
sions. These parameters can often be retrieved from the slide print specifi-
cation used by the robot that printed this slide. If this specification is not
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available, all parameters can be evaluated interactively on the Spotfinder
Analysis Page by measuring relative distances with the mouse pointer.
All distances are expressed in image pixels. Each of the subgrids can be
moved, rotated, expanded, or shrunk interactively to fit the spots arrange-
ments on an image. These operations can also be applied to all the subgrids
simultaneously.

1. Grid movement.Move the whole grid set to align the upper left‐most
spot with the top left cell of the first (upper left) subgrid. To do this, click the
right mouse button while the mouse pointer is not inside any grid. The All
Gridsmenuwill be activated. ChooseMoveAll from theAllGridsmenu and
move the mouse slowly or use keyboard arrows keys to move all subgrids
simultaneously into the appropriate position.When the placement is correct,
terminate the Move mode by pressing the End key on the keyboard or by
clicking the left mouse button. The user can repeat this action as many times
as is necessary. Undo/redo grid commands are available for convenience.

2. Grid expansion. If the number of rows and columns is set correctly
but the subgrids do not fit the image, it may be necessary to expand or
shrink the subgrids. Bring up the All Grids menu (as described earlier) and
choose the Expand All command. By using the keyboard arrow keys, the
user can expand or shrink all subgrids together, either horizontally or
vertically. Both the expansion and the shrinking operations are performed
while keeping the left and top edges of each grid fixed. Only the right and
bottom edges of each subgrid are moved when these operations are
performed.

3. Changing cell size in grid. If it is necessary, the cell size can be adjusted
by selecting Cell Size All from the All Grids menu. Use the keyboard arrow
keys to increase or decrease cell size in the vertical and horizontal dimensions.
One arrow key press corresponds to a cell size increase or decrease by one
pixel. Terminate theCell SizeAllmodewhenfinished by pressing theEndkey
on the keyboardorby clicking the leftmousebutton.When increasing cell size
try to avoid touching the spots by growing neighboring cells. As long as this
touching can be avoided, overlapping of the adjacent cells is actually safe and
desirable because it increases the area around each spot for local background
calculation.

4. Grid rotation. Spotfinder provides the ability to rotate subgrids
for better alignment of images that have an angular offset. Activate this
command mode by choosing Rotate All from All Grids Menu and use the
up and down arrow keys on the keyboard to rotate all grids synchronously.
The rotation of each subgrid is performed around its top left corner. It is
better to use only the upper left‐most subgrid as an indicator of alignment.
The rest of the subgrids are expected to have the same angular offset
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due to the nature of the parallel arrangement of the pins during slide
printing.

The user can repeat steps 1–4 in any sequence any number of times for all
subgrids or any single selected subgrid to improve grid adjustment. Make
sure at this point to use only the first subgrid (top left) as an indicator of
proper grid size settings when the ALL Grid command is used.

Grid Adjustment

After setting the correct grid size the top left subgrid should be aligned and
positioned correctly while the others likely have some positional offset due to
the natural bending of the printing pins. These subgrids can be adjusted
manually or by using the automatic procedure. The automatic procedure
requires the user to provide an estimated spot size. Spot size is used to detect
the location of the brightest spots that serve as landmark targets in each
subgrid. The automatic grid adjustment procedure can be applied as many
times as needed; in many situations it comes to satisfactory grid alignment
after a few applications. However, if it fails to provide a good grid adjustment
the user must adjust the grid manually by using the mouse and keyboard
arrow keys.Manual subgrid position adjustment is performed bymoving each
grid individually with themouse or keyboard arrow keyswhile inMovemode,
which is activated from theMove command of theGridmenu.

Grid Processing

Select the segmentation method and input all required parameters.
When setting minimum and maximum spot sizes for the Otsu method the
rule of thumb is to set the range of spot sizes as close as possible to the
visible range on the slide. However, range minimization can be potentially
dangerous, as it may cause instability in the Otsu method iteration proce-
dure. The actual spot size range on the slide can be measured interactively
with the help of the mouse pointer on theAnalysis Page. For theHistogram
method, set the spot size slightly higher than what is expected. To start grid
processing press the Process All button on the Gridding and Processing
pane. Spot detection, segmentation, and local background correction steps
are all performed during processing.

Grid Alignment Examination

Checking theContour check box on theAnalysis Pagewill show the spot
boundaries. After the processing is completed, the user is able to see the
contours of the spots colored in green for bad spots or magenta for good
spots. If green contours appear in cells with spots that otherwise look good,
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this may indicate misalignment or wrong settings for the segmentation
method used. Go to the QC View Page for subgrid alignment checking.
Visually compare the relative size of the green area on different subgrids in
the array. They should be approximately the same unless the array was
designed intentionally with some special subgrids (e.g., all replicates are
printed in one subgrid). Any subgrid with a disproportionately large green
area should be checked for misalignment. If the alignment is shown to be
correct, the higher number of bad spots in this subgrid can be considered
indicative of the low expression of genes printed in this subgrid.
Postprocess Data Tuning

The default QC filter operation is the last step of processing. The user
can change QC filter settings in the Post‐processing dialog without having
to reprocess the slide. Switch to the Post‐processing dialog to enter new QC
filter settings. Background correction can be disabled or enabled by using
the check box of this dialog. The QC filter can be set more or less stringent
by changing the cutoff threshold defined by the signal‐to‐noise ratio (see
earlier discussion). By varying parameters � and � of Eq. (1) the user can
set threshold T at the level where a reasonable distinction between weak
spots and strong spots, produced by noise, is visible on the Analysis page.
After making the desired changes, press the button Update Changes. The
result can be observed in the Analysis Page, on the spreadsheet data table
of the Data page and on the RI plot page.
Annotation Import

A variety of annotation file formats (.ann, .dat, .gal) can be loaded
by Spotfinder for the purposes of displaying annotation alongside expres-
sion data and to map to an output data file. At first the user needs to
construct or load the grid in Spotfinder to ensure correct mapping. To load
an annotation file, go to the main menu bar and select Data ! Load
Annotation File; the selected file will be loaded and checked for the correct
total number of rows (spots). Once loaded, the annotation can be viewed
on the Data page or on the status bar at the bottom of the Spotfinder GUI
for spots selected on the Analysis page. To map annotation to the data set
in Spotfinder and in any future .mev files, go to the main menu and select
Data ! Set UID from annotation or Data ! Set DBID from annotation.
This will change default UIDs in the MEV data tab of the Data page and
create an additional DBID column with DBIDs from the annotation file.
The new mapping will be stored in any .mev files generated by Spotfinder
in the next step.
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Report Output Data

To save expression data in a .mev file, go to the menu Data! Save Data
to MEV file and enter a file name in the Save File dialog. This creates a tab‐
delimited data file that is used by all software tools in the TM4 suite. To save
grid information in a binary, platform‐independent SFG file (Spotfinder Grid
file), go to the menuGrid! Save Grid in File and input the grid file name in
the dialog. The grid and all raw data can also be saved in a platform‐
independent, binary data SFD file (Spotfinder Data file). To create an SFD
file, go to the menuData! Save Data to SFD file; the file save dialog will ask
for a file name to save as. The SFD file stores all processed raw data and spot
contour vectors needed for graphical representation of the contours on the
Spotfinder Analysis page in a later session. The SFD file can be used later by
any user who needs to view the results with the RI plot and spot contours; the
postprocessing operations can be applied to SFD data to generate a new .mev
file for the same data set but with different QC filter settings.

MIDAS

Microarray analysis is a comparative analysis. In a two‐color experi-
ment, cDNA or mRNA abundances are compared between two samples.
During a microarray experiment, the different samples are dyed with Cy3
(green) and Cy5 (red) fluorophores and are cohybridized to a glass slide.
After scanning the slide and performing an image‐processing procedure,
the intensities for each spot, for both green and red channels, are recorded.

An underlying assumption in microarray analysis is that differences
between the two intensities for each spot faithfully reflect the cDNA or
mRNAabundance differences between the two samples. This is the basis for
investigating cDNA or mRNA abundance differences in tens of thousands
of spots in a microarray slide simultaneously by clustering using pattern
recognition or other data mining techniques. This assumption, however, is
compromised by all kinds of errors or biases introduced during the experi-
ment and image processing. Predicting the bias, adjusting the raw intensities
for each spot accordingly so that they better reflect the true picture about the
cDNA/mRNAabundances is a crucial data preprocessing step before down-
stream analysis can be carried out. It is also important to remove those spots
within an array with ‘‘unacceptable’’ intensities, as defined by varying cri-
teria. These data preprocessing steps are calledNormalization and Filtering.
Other normalization and filtering methods are found elsewhere (Ayroles
and Gi bson, 2006 ; Gol lub an d Sherloc k, 2006; Reime rs a nd Carey, 2006 ).

Midas (also calledMIDAS) is the data normalization and filtering tool in
the TM4 microarray data analysis software suite. It contains a number of
normalization and filteringmodules, as well as significant gene identification
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modules. The software provides a user‐friendly graphical scripting feature,
which allows these modules to be pipelined together to form an analysis
workflow. Midas has a strong graphing feature for users to investigate the
analysis results. A graphical PDF analysis report can also be generated by
user’s request.
Building a Pipeline

A typical Midas data analysis pipeline is composed of three steps:
(1) reading raw data input files, (2) defining the analysis workflow by
queuing one or more analysis modules, and (3) writing processed data
output files.

After an analysis pipeline is defined in the Midas Workflow window,
parameters should be set in the parameter sheets associated with each
module defined in the pipeline (Fig. 6). The analysis pipeline and the
parameters can then be saved into a Midas project file (.prj) under a Midas
project folder. The Midas project folder will be the location for all analysis
results, output data files, analysis plots, reports, and error messages, if
there are any. The analysis example at the end of this chapter describes
FIG. 6. Midas graphical user interface.
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the steps involved in building an analysis pipeline using several popular
modules.

Normalization Modules

Midas includes a number of normalization algorithms. These can be used
in sequence with each other or with other modules. Choosing appropriate
normalization and filtering methods can be one of the more challenging
aspects of using microarrays. Applying inappropriate methods to experi-
mental data might lead to information loss or information distortion. An
example is that removing raw data by some filtering methods might have
negative consequences for some downstream gradient correction methods.

A common approach to normalization is global normalization. In this
approach, averages of the overall expression levels for all genes within an
array across different arrays are set to be equal. This follows from the
assumption that while genes can be expressed differentially, the amount of
transcription is essentially similar across samples. Furthermore, it is also
common to set the averaged overall expression levels for each array to be
zero. This follows from the assumption that within each array, overex-
pressed genes and underexpressed genes are roughly balanced. Global
normalization methods are mostly useful for normalizing hybridiza-
tion arrays for gene profiling or similar samples comparison purposes.
They might not be valid normalization approaches when the compared
samples are too different across arrays or when using comparative genomic
hybridization arrays.

Table I provides some general guidance for applying the right normali-
zation and filtering methods. Keep in mind that the correction of a bias or
error assumes that the experimental design and array samples do not
undermine the assumptions of the applied algorithm.

Total Intensity Normalization

Total intensity normalization (Quackenbush, 2002) assumes the summed
intensities for each of the two channels, channel A and channel B, for all
spots within an array should be equal. If there is any observed difference, it is
caused by some dye‐specific systematic bias and thus should be adjusted. The
algorithm calculates the factor between the two summed intensities SIA and
SIB and scales intensity A (IA) or intensity B (IB) of each spot so that the
goal of equal summed intensities in the two channels is achieved.

Lowess Normalization

Lowess normalization (Quackenbush, 2002; Yang et al., 2002a,c) assumes
that spots having different overall intensities [measured by log10ðIA � IBÞ]
should have different systematic bias added to their expression levels



TABLE I

GUIDELINES FOR SELECTING NORMALIZATION AND FILTERING METHODS

Issues to be addressed Applicable methods

Averaged overall expression

within an array not zero

observed unexpectedly

Total intensity; iterative log‐mean centering;

ratio statistics; Lowess

Print tip‐dependent
bias observed

Standard deviation regularization

Intensity‐dependent
bias observed

Lowess

Nonlinear correlations

observed unexpectedly

between the two channel

intensities (logarithm transformed)

Iterative linear regression

Inconsistent expressions between

dye‐swapped experiments observed

Flip‐dye consistency normalization

and filtering

Selecting significantly expressed

genes from a single array

Slice analysis

Selecting significantly expressed

genes when replicated arrays

are available

Statistical methods such as ‘‘t test’’

and ‘‘SAM’’

Noisy raw expressions Background filtering; low‐intensity filtering
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(measured by log2
IB=IA). Thus the goal of this normalization method is to

extract the intensity‐dependent systematic bias for each spot and use it to
adjust the raw IA or IB for each spot. The Lowess algorithm estimates the
adjustment factor for the log2

IB=IA value of a spot by finding those spots in the
neighborhood of this spot, based on their intensities, and computing their
commonly shared bias by a maximum likelihood technique, which applies a
locally weighted model to spots’ expression data in each neighborhood. A
related algorithm, Loess, differs from Lowess because of the model used in
the regression: Lowess uses a linear polynomial, whereas Loess uses a qua-
dratic polynomial. The ‘‘neighborhood’’ is defined by a parameter called the
smoothing parameter, which defines the percentage of all spots within a
physical scope. The physical scope can be either block, meaning all spots
printed by the same print tip, or global, meaning all spots on the array.

Iterative Log‐Mean Centering Normalization

Iterative log‐mean centering normalization (Quackenbush, 2002) as-
sumes that the majority of the spots within an array show a balanced
distribution of expression levels (measured by log2

IB=IA). For these spots,
their log2

IB=IA values should have a mean value of 0. Aside from this
majority, a few outlier spots, those with very high or very low log2

IB=IA
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values, contribute significantly to the calculation of the overall log2
IB=IA

mean. This algorithm uses an iterative procedure to remove the outliers
and calculate the log2

IB=IA means for the outlier‐removed spots until the
means converge. The algorithm then scales the intensities of each spot by
this converged mean value.

Iterative Linear Regression Normalization

Iterative linear regression normalization (Finkelstein et al., 2000) as-
sumes the correlation between log10IB values and log10IA values for all
spots within a physical scope on the array displays a y ¼ x linear relation-
ship. The physical scope can be either block, meaning all spots printed by
the same print tip, or global, meaning all spots within the array. The
algorithm calculates the slope and intercept between the log10IB values
and log10IA values for spots within the specified physical scope, iteratively.
During each iteration, the outlier spots, which are defined as those having
log10IB or log10IA residuals greater than a user‐defined threshold range,
are removed. The final slope and intercept are achieved when the calculat-
ed correlation coefficients converge. The final slope and intercept are then
used to adjust the IA and IB of each spot so that the log10IA and log10IB
distribution displays such a linear relationship.

Standard Deviation Regularization

Standard deviation regularization (Yang et al., 2002c) assumes that
variances of the expression levels of the spots (measured by log2

IB=IA)
within different physical scopes should be the same. The physical scope
can be either block, meaning all spots printed by the same print tip, or
global, meaning all spots within the array. Based on this assumption, the
IA and IB values of each spot are adjusted so that the same standard
deviation, and thus the variance, of the log2

IB=IA values of the spots prevails
among the specified physical scope. For example, the variances for all blocks
on an array could be set equal to each other by this method.

Ratio Statistics Normalization

Ratio statistics normalization (Chen et al., 1997) assumes that there
exists a sample‐independent single‐mode IB=IA distribution function with
mean � and standard deviation �. The mean can be estimated through an
iterative process described in the reference paper. The algorithm
also assumes that the population of IB=IA values for all spots in an array
should approximately demonstrate a mean value of 1. The calculated mean
� can then be used to normalize the IA and IB of each spot so that the IB=IA
population mean becomes 1.
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Flip‐Dye Consistency Normalization and Filtering (Quackenbush, 2002)

In a pair of flip‐dye arrays s1 and s2, the log2
IB=IA for any spot in s1 is

expected to have an expression value of�log2IB=IA for the corresponding spot
in s2 due to the fact that the two spots are dye‐swapped replicates of each
other. Therefore, if the log2

IB=IA values for all spots in s1 versus log2
IB=IA

values for all spots in s2 are studied for their correlation, a linear relationship
is expected. The flip‐dye consistency normalization algorithm checks
the consistencies for each spot’s expression values between s1 and s2 by
calculating the c ¼ log2

IB1=IA1
� log2

IA2=IB2
histogram, where IA1 and IB1

denote the two‐channel intensities for a spot in s1 and IA2 and IB2 denote
the two‐channel intensities of the corresponding spot in s2. By assuming this
histogram follows a normal distribution with a mean of 0, those spots with c
values that fall beyond a user‐defined consistency range are removed. These
are considered to be inconsistent data between the flip‐dye replicates. The rest
of the spots are output as consistent spots. For each of these consistent spots,
the log2

IB=IA value is presented as the geometric mean of log2
IB1=IA1

value
and log2

IB2=IA2
value.

Filtering Modules

Filtering modules reduce the size of the data set by removing elements
that do not meet certain user‐defined criteria. Thesemodules can be added to
the workflow before or after normalization modules. Filtering modules ap-
plied before normalization remove the ‘‘bad’’ or unreliable elements defined
by certain quality control criteria to allow only ‘‘cleaner’’ data to be used as
input for normalization procedures. Suchmodules include flag filtering, back-
ground filtering, and low‐intensity filtering. In contrast, filtering modules
applied after normalization remove elements that may not be important or
interesting, given the research goals. These ‘‘postnormalization’’ filtering
methods include in‐slide replicate analysis and cross file trim, as well as the
significant gene identification modules described in the following sections.

Flag Filtering

During the image processing stage, some spots might be flagged as
‘‘bad’’ due to a variety of reasons, such as saturation. The flag‐filtering
feature allows these flags be read before data are processed. Flagged spots
will be excluded from any downstream processes.

Background Filtering

During the image processing stage, the user may request that back-
ground intensities be calculated along with the signal intensities IA and IB.
These background intensities can be used to calculate the signal‐to‐noise
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ratios for each spot. The background filtering feature excludes those
spots with signal‐to‐noise ratios below a user‐defined threshold from the
downstream processes.

Low‐Intensity Filtering

The low‐intensity filtering feature excludes those spots with channel A
intensity IA or channel B intensity IB lower than user‐defined thresholds
from the downstream processes.

In‐Slide Replicate Analysis

In‐slide replicates are technically replicated spots printed within an array.
These replicated spots are theoretically expected to demonstrate the same
log2

IB=IA expression values. Observed variances among the replicates are
caused by random errors. In‐slide replicate analysis combines the replicated
spots, which are defined as those spots in an array sharing the same annotation
identifier, for example, feature name, into a single output data spot. The
expression value log2

IB=IA of this combined spot is equal to the geometric
mean of the log2

IB=IA values of the replicates that were combined.

Cross File Trim (Percentage Cutoff Trim)

When multiple data files with the same number of spots are analyzed
together, it is often desirable to check the consistency of the expression
value of a spot across all the files. This occurs after each file is normalized
and filtered, but before processed data are written to output files. The
consistency of a spot is calculated as a percentage of the number of
files showing the spot as being ‘‘unfiltered’’ divided by the total number
of files used.

Cross file trim allows the consistency percentage of each spot to be
compared with a preset consistency threshold percentage. Spots that do not
pass the threshold comparison are filtered in the output files by setting their
IA and IB intensities to 0. This filtering method is also referred to as
‘‘percentage cutoff’’ trimming in MeV.

Significant Gene Identification Modules

Slice Analysis

It is well known that variances of expression levels of spots (measured
by log2

IB=IA) vary as the intensities change. This fact makes a simple ‘‘fold
change’’ criteria for identifying differentially expressed gene within an
array less than ideal.
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Amodified approach is to study how the expression levels of the spots are
distributed across the array as the overall intensity of the spots [measured by
log10ðIA � IBÞ] varies. In this approach, each spot is associated with a group of
spots, called a ‘‘slice.’’ A slice consists of those spots that have similar overall
intensities as the query spot. The mean and standard deviation of the expres-
sion values in each slice are calculated. A differential expression z score for a
spot can then be defined as the difference between the expression level of the
spot and the mean expression value for the slice that the spot belongs to,
dividedby the standard deviation of the slice that the spot belongs to.A spot is
identified as ‘‘significantly expressed’’ if its differential expression z score is
greater than a user‐defined threshold.

Slice analysis (Yang et al., 2002a), a method to identify signifi-
cantly expressed genes, classifies genes within a single array by their
intensity‐dependent differential expression z scores as described earlier.

One‐Class t Test and One‐Class SAM

When multiple arrays representing technical or biological replicates of
the same genes are available, significantly expressed genes can be identified
by applying scientific statistical analysis. Two such methods are implemen-
ted in Midas: one‐class t test and one‐class SAM (Chu et al., 2002; Tusher
et al., 2001). These methods can also be found in MeV. Users who are
interested in applying the one‐class t test and one‐class SAM are encour-
aged to read the corresponding sections in the MeV description and the
sample analysis walk‐through that follow.

Graphs and Reports

A variety of analysis graphs are plotted and saved during the execution
of a Midas analysis pipeline. These graphs, such as the R‐I plot (Fig. 7, left)
and flip‐dye diagnostic plot (Fig. 7, right), are saved within the Midas
project folder and can be studied under the ‘‘Investigation’’ tabbed panel.
Graphs of interest can be exported to the graphical PDF reports (Fig. 8) by
the user’s request.

MeV

After spot scanning and normalization comes the data analysis step that is
usually of most interest to microarray practitioners, namely mining data to
look for biologically significant patterns of gene expression (Ayroles and
Gi bs on , 2 00 6; D own ey , 2 00 6; Neal and Westwood, 2006; Reimers and Carey,
2006; Royce et al., 2006). The MeV (MultiExperiment Viewer) software
incorporates an extensive array of clustering, statistical, and visualization



FIG. 7. (Left) An R‐I plot showing significantly expressed genes classification results after slice analysis is applied. The outlier

genes, which have their intensity‐dependent, differential expression z score greater than twofold of standard deviation, are colored

red; genes z scores below onefold of standard deviation are colored blue; the remainder are colored green. (Right) A flip‐dye
diagnostic plot showing consistencies about expression values between a flip‐dye pair. The solid diagonal line represents the theoretical

perfect consistency relationship. Genes in blue are considered to be consistent between the flip dye using twofolds of standard

deviation cut as the consistency criteria. The other genes are colored red.
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FIG. 8. Midas PDF analysis report.
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tools that can be used to analyze preprocessed microarray data. An intuitive
and feature‐rich interface makes it easy to use the software, eliminating
the need for a programming or scripting language. In addition to the .mev
file format used by the TM4 suite, MeV (also known as TMeV) works
with file formats generated by a number of other platforms or analysis
programs (Affymetrix MAS 5.0 output, RMA output, Agilent or Genepix
scanner files, and a more generic tab‐delimited text file format containing log
ratios frommultiple samples). Thus,MeV is a versatile end‐stage analysis tool
that can be used at the last stage of a TM4 pipeline or as a stand‐alone
program to analyze data that have been processed with other analysis tools.

Data Representations and Distance Metrics

In MeV, the expression level corresponding to each spot on a slide is
represented as an expression element (Fig. 9). An expression element is
typically a log2 transformation of an expression ratio in the case of two‐
color arrays, where a ratio is calculated by dividing the fluorescence intensity
from one channel by the fluorescence intensity from the other channel for a
given spot on a slide. In the case of single‐channel arrays (such asAffymetrix
chips), an expression element is the normalized single intensity value for a
probe set. Hereafter, for convenience we use the term gene to refer a spot or



FIG. 9. Data representations in MeV. (A) Numerical and (B) false‐color representations
of an expression element, (C) a gene expression vector, (D) an experiment expression vector,

and (E) an expression matrix.
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a probe set, even though the DNA sequence corresponding to that spot
or probe set may not span the entire length of a gene in a biological sense.
Because an experiment corresponds to a slide on which a given hybridization
was carried out, these three terms are often used interchangeably.

An expression vector (Fig. 9C and D) is a set of expression elements for a
given gene or experiment. For a gene expression vector, each element comes
from a separate experiment in which the intensity of that spot wasmeasured.
An experiment expression vector contains the expression elements of a set
of genes in a given experiment.

An expression matrix (Fig. 9E) in MeV is a two‐dimensional array of
expression elements from a set of genes over multiple experiments. By
convention, each row is an expression vector from a given gene, and each
column corresponds to an expression vector from a given experiment. The
expressionmatrix inMeV (and generally in microarray data representations)
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is shown in a false‐color view on a red–green scale by default, with green
representing low expression and red representing high expression. These
colors can be customized.

Another important concept is that of distance. A distance metric is a
numerical estimate of how similar the expression patterns of two expression
vectors are. The smaller themagnitude of distance, the greater the similarity
of the two patterns. Many algorithms in MeV use distance metrics to put
expression vectors in clusters that contain vectors of similar expression.
There are many types of distance metrics, some of which use very different
criteria from one another to estimate similarity. Thus, two vectors might be
judged very similar by one distance metric and quite unlike one another by
another metric. It is important to select a distance metric that is appropriate
to the underlying question being asked. For instance, the Pearson correla-
tion distance is appropriate when one is interested in finding genes showing
similar patterns of expression over a set of experiments, such as a time
course, regardless of the magnitude of expression. However, if the primary
interest is in grouping together genes that have similar levels of expression
(over‐ vs. underexpressed), then the Euclidean distance might be a better
choice. MeV offers 11 distance metrics, any of which can be applied to the
distance‐based algorithms in the package.
Data Mining in MeV: A Brief Algorithm Overview

One should be aware that there is often not one ‘‘correct’’ analysis
approach to any particular data set. What is important is to know what an
algorithm is doing, how it makes decisions during cluster creation, how
input parameters affect results, and what features of data may be revealed
by an analysis. A powerful feature of MeV is the ability to overlay results
obtained from multiple methods to reach a consensus or to reveal different
aspects of data. At times finding an approach requires some level of trial
and error to find methods and suitable parameters.

The mechanics of executing an analysis algorithm in MeV are quite
simple. Once data are loaded, the analysis is initiated by selecting the
corresponding button in the toolbar or the menu item from the ‘‘algo-
rithms’’ menu. All algorithms initially open one or more dialog boxes that
are used to collect input parameters. The lower left corner of each dialog
contains an information button (Fig. 10), which opens a help window with
information about the input parameters.

Some algorithms require rather large amounts of computer memory
space and it is generally recommended to have 512 MB to 1 GB of RAM.
In addition to memory requirements, several algorithms are computationally
intensive and can take several minutes or, in some cases, hours to complete.



FIG. 10. HCL algorithm parameter selection dialog. The lower left of each algorithm

dialog contains the parameter information button.
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All algorithmspresent progress logs or progress bars to provide a status report
during algorithm execution.

MeV currently provides 24 analysis techniques. In terms of the objec-
tives they attempt to accomplish, these algorithms can be classified into
three broad categories: exploratory techniques, hypothesis testing techni-
ques, and classification techniques. Exploratory techniques look for broad
patterns in the data set; examples of algorithms in this category include
hierarchical clustering (HCL) and principal components analysis (PCA).
Hypothesis testing techniques use information about the experimental de-
sign to identify a subset of genes that show statistically significant differ-
ences in patterns of expression across groups of samples; examples of
such techniques include TTEST, SAM, and ANOVA. Classification tech-
niques use information about the known class membership of some genes
or samples to assign the remaining genes or samples into these classes;
algorithms such as SVM and KNNC fall into this category.
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Alternatively, these analysis techniques can be categorized based on the
nature of their underlying algorithms. These broad categories are agglomera-
tive methods, divisive methods, methods to assess confidence in clustering
results, neural network approaches, statistical tools, classification algorithms,
data visualizations and component analysis, and biological theme discovery.
We use these categories based on algorithm heuristic in describing some of
the following algorithms. The cited references, manual, and training slides
available at the TM4 web site provide greater detail about these algorithms.
Agglomerative Methods

Agglomerative methods start by considering each expression vector as a
distinct and independent object. Vectors are fused into clusters based on
similarity, which is determined based on the selected distance metric. A
cluster so formed from two elements is then considered as a single object, a
cluster of size two, rather than as two distinct elements. In subsequent rounds,
objects are fused to form bigger clusters based on intercluster similarity using
the same distance metric as described earlier to define intercluster distance.
The method continues joining the most similar objects at each stage until all
objects are assigned to one large cluster.

HIERARCHICAL CLUSTERING (HCL). Hierarchical clustering (Eisen et al.,
1998; Weinstein et al., 1997) is likely the most widely used agglomerative
method for preliminary data exploration. HCL constructs a binary tree by
successively grouping the genes or samples based on similarity. A set of
vectors falling under a node in the tree tend to be more similar to each other
than to vectors in other sections of the tree. By observing how gene or sample
expression patterns are arranged in the tree, one can select and focus on
subtrees that contain consistent patterns of interest.

TheHCL tree viewer inMeVpermits one to dynamically select a subtree
to assign to a cluster or to slice the tree into any number of distinct clusters
based on a similarity value cutoff (Fig. 11). Hierarchical clustering is a
popular analysis option for getting an overview of patterns in the data set.
Divisive Clustering Methods

Divisive clustering methods begin with all vectors in one cluster, which is
then partitioned into distinct clusters. The objective is to create clusters such
that all elements within a cluster are similar to one another, and each cluster
is dissimilar to the others. No relationship is specified among the clusters.

K‐MEANS/K‐MEDIANS CLUSTERING (KMC). K‐means clustering (Soukas
et al., 2000) is a divisive technique that divides the genes or samples into a set
of k clusters. Initially, the vectors are assigned randomly to a predefined



FIG. 11. Hierarchical cluster of time course data using the Pearson correlation distance

metric. Prominent patterns of expression have been selected as clusters.
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number of clusters. The assignment is iteratively refined by shuffling vectors
among clusters and updating themean ormedian profile of each cluster until
each vector is assigned to the cluster whose mean or median it is closest to.
This method is useful when one has a reason to assume that data should
partition into a specified number of clusters. During clustering analysis,
vectors are sometimes divided into too many clusters, such that there are
two or more clusters that have mean patterns that are similar. This suggests
that those clusters should be merged. In other cases where too few clusters

have been created, the clusters will tend to be large and contain quite diverse
and variable patterns in each cluster. The number of clusters can be chosen
by trial and error to hone in on a partitioning that appears to appropriately
split data into distinct clusters.
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CLUSTER AFFINITY SEARCH TECHNIQUE (CAST). The cluster affinity
search technique (Ben‐Dor et al., 1999) partitions data into clusters that
contain members guaranteed to have aminimum specified ‘‘affinity’’ to other
members of the cluster. The affinity of a particular gene is related to the total
similarity of that gene to all other genes in the cluster being created. A nice
feature of this algorithm and some others like it is that the number of clusters
to create is not predefined. Clusters are created until all items are assigned to
clusters of the largest size possible while ensuring that all genes within a
cluster have some minimal affinity for the cluster.

GENE SHAVING. Gene shaving (Hastie et al., 2000) is a divisive cluster-
ing technique that partitions the genes into clusters such that genes within a
cluster have low gene‐to‐gene variability, while having high variance across
samples. Thus, a cluster of genes created by this algorithm will tend to have
similar expression profiles that tend to vary substantially across samples.
One important difference from many other divisive clustering techniques is
that clusters from gene shaving are not always mutually exclusive so that a
given gene may appear in more than one cluster. The procedure attempts
to make successive clusters almost uncorrelated with previously created
clusters so that if a gene appears in more than one cluster, each such cluster
might highlight different aspects of the variability of that gene.

QTCLUST. QTClust (Heyer et al., 1999), like CAST, is a clustering
technique in which the number of clusters is not specified by the user, but
is determined by two inputs: the maximum possible distance between two
genes in a cluster (called the cluster diameter) and the minimum number of
genes that a cluster must contain (the cluster size). For calculating cluster
diameter, gene‐to‐gene distance is computed using a jackknifing procedure
in which each sample is left out in turn. This reduces bias that might be
introduced by individual outlier samples. Clusters are created in sequence,
and the genes that are unassigned after the creation of a cluster are subjected
to successive rounds of clustering until no more clusters can be created that
satisfy both the cluster diameter and the cluster size thresholds. At the start
of each round of clustering, all unassigned genes serve as potential seeds for
a new cluster. The largest cluster created from all seeds in a given round is
retained, and the procedure is repeated on the remaining unassigned genes.
Allowing each eligible gene to serve as a potential seed for further clustering
prevents the algorithm from being biased by the order in which data are
presented to it.
Assessing Confidence in Clustering Results: Support Trees, Figures of
Merit, and K‐Means Support

Clustering algorithms are guaranteed to organize data into clusters,
even when no clear patterns exist. It is therefore helpful to assign measures
of confidence on the clustering results to assess whether the clustering is
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meaningful. This is done by repeating the clustering analysis many times
with the same parameters on the same data set or a resampled data set or
by gradually changing the magnitude of an input parameter and then
comparing the results across all runs. MeV offers three methods to assess
confidence in clustering results.

HCL SUPPORT TREES (ST). The STmodule inMeV builds a hierarchical
tree by the same algorithm employed by the HCL module of MeV. The
difference here is that after finding the initial tree, the expression matrix is
resampled with replacement many times to produce bootstrapped expres-
sion matrices. An HCL tree is built on each of these bootstrapped matrices
and compared to the original tree. Each node in the original tree is assigned
a value between 0 and 100, indicating the percentage of times over all
resampling trials that a node containing those elements occurred in a tree
obtained from a resampled matrix. These bootstrap confidence values are
displayed on the tree as colors or as numerical values. Higher node values
indicate that the vectors under that node clustered together frequently
regardless of resampling, which indicates that the cluster represented by
that node was not unduly influenced by a small subset of data.

Other algorithms in this category are figures of merit (Yeung et al.,
2001), which iteratively step through different values of k searching for an
optimal value based on a comparison of within‐cluster and between‐cluster
distances, and K‐means support, which iterates K‐means at a fixed value of
k searching for stable clusters.

Machine Learning Methods

Machine learning‐based clustering approaches are suitable for parti-
tioning large data sets that contain a lot of random noise in addition to
distinct expression patterns of interest. This means that these approaches
are very applicable to microarray data. These approaches represent the
clusters being created as a set of nodes connected as a network, where each
node has a representative expression profile that is trained by data to better
conform to a subset of data. As each vector is presented to the network, the
node or nodes most similar to that vector adapt to become even more
similar to the presented vector. By presenting the vectors to the system
many times, the nodes conform to represent clusters that are inherent in
data. Once the adaptation is complete, each vector is placed into a cluster
related to the node with the most similar representative expression profile.

SELF‐ORGANIZING MAPS. Self‐organizing maps (Kohonen, 1982;
Tamayo et al., 1999) in MeV are a very efficient neural network implemen-
tation that permits millions of training/adaptation cycles to be run in a
relatively short time. The algorithm requires an initial topology of the
network, which means that an estimate of the number of expected clusters
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must be provided. Similar to KMC, the suitability of this estimate can be
assessed based on the results of multiple runs.

SELF‐ORGANIZING TREE ALGORITHM (SOTA). The self‐organizing tree
algorith m ( Dopazo and Carazo, 1997 ; Herrero et al., 2001 ) is a hybrid
approach that bridges divisive and neural network approaches to produce
a binary tree structure where each terminal node or leaf in the tree is a
cluster. Starting with all genes in a single node or cell, the cell then divides
and partitions the vectors optimally between the two offspring cells. On
each division the most variable cell is split until a predetermined number of
divisions or a cluster variability threshold is met. In addition to the de-
scribed benefits of the machine learning methods, SOTA does not require a
predetermined cluster count.

Statistical Tools for Extracting Significant Gene Lists

The basic clustering methods described previously focus on finding
correlated patterns of gene expression within the data set. This is often
useful for time course data or for general data mining for prevalent patterns.
In the case where the experimental design contains biological or technical
replicates and the samples are partitioned into discrete sets that represent
experimental conditions, statistical tests can be applied to find genes that
show differential expression under the conditions being studied. In addition
to extracting genes of interest, each gene will have a corresponding p value
describing the likelihood that the observed finding was due to chance.
Microarray experiments are being designed increasingly to take advantage
of statistical tools.

TTEST (TTEST). MeV provides three t test (Dudoit et al., 2000; Korn,
et al., 2001, 2004; Pan, 2002; Welch, 1947; Zar, 1999) designs: one sample,
between subjects, and paired. The one‐sample t test is useful for identifying
genes that show consistent over‐ or underexpression across a series of
biological or technical replicates. The between‐subjects t test is useful for
finding genes that are significantly differentially expressed between two inde-
pendent groups of samples (e.g., two strains of mice). The paired t test can be
used to find genes showing differential expression between two conditions
assayed on the same samples (such as before and after administering a drug to
a group of individuals).

ONE‐WAY AND TWO‐FACTOR ANOVA. Two types of ANOVA designs
are offered: One‐way (Zar, 1999), for comparison of three or more indepen-
dent groups, and a completely randomized two‐factor design (Keppel and
Zedeck, 1989; Manly, 1997; Zar, 1999) for analyzing variation across two
conditions (such as sex and strain). See Ayroles and Gibson (2006) for more
about ANOVA. The t test andANOVAmodules offer error rate correction
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options (such as Bonferroni corrections) for multiple testing (Dudoit et al.,
2003), as well as false discovery rate (FDR) computations (see later).

SIGNIFICANCE ANALYSIS OF MICROARRAYS. A false discovery rate can
also be computed using the popular SAM module (Tusher et al., 2001;
implemented as in Chu et al., 2002), which includes options for five experi-
mental designs, four of which are analogous to the t test and one‐way
ANOVA designs, while the fifth is suitable for survival data. FDR compu-
tations are often a desirable alternative to conventional statistical tests
(such as t tests and ANOVA) in microarray data analysis. The simulta-
neous analysis of thousands of genes leads to highly inflated error rates for
individual genes when doing conventional statistical tests. FDR analysis
can help circumvent this problem by allowing the identification of a list of
potentially significant genes while still keeping overall error rates low.

TEMPLATE MATCHING. Template matching (Pavlidis and Noble, 2001) is
useful for finding patterns of expression that are similar to a user‐specified
pattern (as judged by the magnitude and sign of the correlation coefficient
between the patterns of interest or the p value of this coefficient).

Classification Algorithms/Supervised Clustering Approaches

Supervised methods use existing biological information about specific
genes or samples (the ‘‘training set’’) that are functionally related to
‘‘guide’’ the clustering algorithm. The existing information is the presumed
class membership of each vector in the training set. This information is
used to classify other vectors (the unknowns) based on how similar their
expression patterns are to members of the training set.

SUPPORT VECTOR MACHINE (SVM). A support vector machine (Brown
et al., 2000) is a supervised classification method that bisects data into two
distinct groups: in class and out of class. SVM uses a subset of data that is
known to fall into the class of interest as examples of the class.

K‐NEAREST NEIGHBOR CLASSIFIER (KNNC). KNNC (Theilhaber et al.,
2002) partitions data into k distinct classes, where k is a supplied number
of partitions. Like SVM, KNNC uses a subset of data to use as examples of
each class being partitioned.

Data Visualizations and Component Analysis

This broad category includes algorithms that attempt to simplify the
interpretation of the main features of data by presenting a view of data that
provides a means to consider high level structure of data.

PRINCIPAL COMPONENTS ANALYSIS. PCA (Raychaudhuri et al., 2000;
Downey, 2006) extracts the features in the data set that are most represen-
tative and best ‘‘explain’’ the nature of the variation in data. These fea-
tures, known as principal components, are used to map data into 2D and
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3D visualizations that can sometimes provide an intuitive view of the main
aspects of variation in the data set. A related method, correspondence
analysis (Fellenberg et al., 2001; Culhane et al., 2002), maps both genes
and samples onto the same set of axes, revealing associations between
genes and experiments.

GENE EXPRESSION TERRAIN MAPS (TRN). Gene expression terrain maps
(Kim et al., 2001) build a 3D topological terrain view where gene or sample
clusters appear as peaks in the terrain. The algorithm first maps data into a
two‐dimensional grid such that elements that are similar are close together.
The third dimension giving rise to the peaks is related to the density of the
elements under the peak. Thismeans that ifmany elements are similar to each
other, they will appear as a tall sharp peak over a small region of the map. By
using appropriate metrics, one can use TRN to get an overview of the data set
and can estimate a rough idea about the number of major clusters in data.

GENE DISTANCE MATRIX. The gene distance matrix displays a 2D heat
map representation of the similarity matrix. This matrix displays the distance
(inverse of similarity) between any two elements (genes or samples) in the
data set. When the matrix is sorted by cluster membership based on a prior
clustering result, thematrix canqualitatively indicate howdistinct two clusters
are in terms of the expression patterns of the member. When used to assess
sample distances, where the matrix is relatively small, one can interrogate the
actual similarity between any pair of expression profiles.

Biological Theme Discovery

After obtaining a list of genes, an important task is to determine
whether the genes have a common or connected biological role within
the system being studied (Whetzel et al., 2006).

EXPRESSION ANALYSIS SYSTEMATIC EXPLORER (EASE). To assist in the
discovery of prevalent biological roles, MeV has an implementation of
the EASE algorithm (Hosack et al., 2003) for finding overrepresented
biological themes in gene lists. This module compares the prevalence of a
biological theme within the cluster to the prevalence of the biological theme
in the population of genes from which the cluster was extracted. One
must first have all of the array probes assigned various classes based on a
categorical classification system, such as assignment of gene ontology terms
(Ashburner, 2000). After selecting a set of genes that are ‘‘significant’’ in an
analysis based on a statistical or other objective test, EASE compares
representation of the various classes within the significant set to the re-
presentation on the entire array using Fisher’s exact test to identify overrep-
resented categories and assign a likelihood score (p value) to each group.
For example, if only 10% of the genes on the array represent energy
metabolism, but 60% of the genes deemed significant are involved in
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energymetabolism, it is likely that this selection did not occur by chance and
that energy metabolism may be mechanistically involved in the process
being studied.
Interface Orientation and Selected Features

The interface of MeV is organized into four main sections (Fig. 12). The
main menu bar (A) contains the main menus for file loading and output,
data transformations and analysis, display options and utility functions, as
well as other key tasks. The algorithm tool bar (B) organizes the algorithm
module buttons into the rough algorithm categories described earlier. An
abbreviated module name and graphic on each analysis button clearly
indicates the analysis. The result navigation tree (C) is used to organize
and navigate analysis results. Clicking on a node in the tree will open a
viewer associated with the labeled node in the viewer display panel (D) to
the right of the tree. The navigation tree also contains the cluster manager,
script manager, and the analysis history log.

MeV has many features to help researchers extract significant informa-
tion from data and clustering results. This section describes some of the
most basic functions and capabilities in the order that they would be
encountered during analysis.
FIG. 12. Graphical interface of MeV: (A) main menu bar, (B) algorithm toolbar, (C) result

navigation tree, and (D) viewer panel. A hierarchical tree viewer is shown in the viewer panel.
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File Loading/Data Filtering/Data Transformations

MeV supports the loading of six expression file formats, including
Affymetrix, GenePix (.gpr), Agilent, and the TM4 suite’s .mev format. A
variety of Data filters can be applied to the loaded data to remove data of
low quality, genes (rows) with few valid data measurements, or genes that
show little change over the loaded experiments.

Data transformations can also be performed from the Adjust Data
menu. These transformations include log transformations of expression
values and mean centering, where each gene expression vector is shifted
such that the mean of the values in each vector is zero.

Cluster Viewers

Nodes that represent clustering results are appended to the result tree as
they are created. Clusters can be viewed in the viewer display panel by clicking
on these nodes in the result tree. In addition tomanyalgorithm‐specific viewers,
MeV provides four basic cluster viewers (Fig. 13) to view the expression and
FIG. 13. Cluster viewer examples, (A) Expression image, (B) cluster table viewer, (C)

expression graph, and (D) centroid graph.
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membership of each cluster.Expression Images display an expressionmatrix
that corresponds to the subset of geneswithin the viewed cluster inwhich the
expression level of each gene (row) across several experiments (columns) is
displayed as a color that reflects the level of expression. The Cluster Table
Viewer displays all gene annotation relating to the genes in the cluster and
supports sorting on annotation, searches, and many other useful features.
Expression Graphs display a graph showing the expression of each gene in
the cluster over the set of loaded samples, whereas Centroid Graphs only
show the cluster’s mean expression pattern with error bars (� 1 SD).

Cluster File Output/Cluster Storage/Cluster Operations

Once formed, clusters can be output to file in a tab‐delimited text format
that contains all expression and annotation data for the genes in the cluster.
This format can be viewed as a spreadsheet and can be loaded easily into
MeV to further visualize and mine that subset of data. Clusters can also be
stored in MeV’s Cluster Manager, which is a repository of selected clusters
that can be viewed via the Cluster Manager node in the result tree. User‐
defined attributes such as a cluster label and description can be storedwith the
cluster as well as an assigned color that can be used to track the location of the
cluster members during analysis. The assigned color propagates through all
viewers to provide a qualitative measure of cluster overlap between analysis
methods or runs. The clustermanager table providesmany useful options, but
the most useful are cluster set operations, such as cluster unions, intersections,
and exclusiveOR . These operations allow one to combine clusters of interest
or to find genes common to two or more clusters.

Analysis Branching

A common task during analysis is to use an algorithm to reduce data to a
set of interesting genes and then to extract this data subset for further
analysis. We term this basic function where data are split off and analyzed
as analysis branching. MeV provides three ways to perform analysis branch-
ing: (1) save the cluster as a file and then load it into a new MeV session as
described, (2) use a feature of cluster viewers to automatically launch a new
session that contains only the genes (or samples) in the cluster, and (3) right
click on the cluster node in the result tree and select a check box to set that
cluster as the primary data source for further analysis.

Analysis Scripting

The graphical nature of MeV lends itself to direct interaction, and it is
often required that algorithms be applied several times to hone in on
appropriate parameter values. An alternative to the interactive mode of
MeV is the scripting mode. MeV provides graphical tools for script build-
ing, representation, and execution (Fig. 14). Once constructed, the XML



FIG. 14. Script viewers of MeV. (A) Graphical script tree viewer and (B) corresponding script XML viewer (script section).
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analysis script can be saved and shared with collaborators to define analysis
pipelines that reveal features of interest.
History Log

All analysis operations, from file loading, data filtering, algorithm runs,
cluster storage, and file output, are recorded in a history log that describes
the operation and attaches a time stamp. This serves as a detailed account
of the analysis.
Sample Analysis Walk‐Through

This section presents a sample Midas and MeV analysis that takes data
through filtering and normalization, clustering and statistical analysis, and
on to biological role analysis. To take full advantage of this walk‐through it
is best to download the applications and the sample data set so that one can
follow along. Data for this analysis walk‐through can be downloaded from
this ftp site: ftp://ftp.tigr.org/pub/software/Microarray/MeV/MIE_data/.
Each section indicates the proper files to use to illustrate the example.
Midas and MeV can be downloaded from http://www.tm4.org/midas.html
and http://www.tm4.org/mev.html.

Study Overview

This study investigates gene expression differences during ovalbumin
induction of asthmatic responses. The study compared expression differ-
ences in mouse strains that are high or low responders to the stimuli in
order to find genes that correlate to susceptibility or resistance. This
example considers a low responder strain (CASTEi denoted as ‘C’ in the
sample description) and a moderate responder strain (BALB\C denoted as
‘B’ in the sample description). For each strain there are biological dupli-
cates for three time points: 24, 48, and 72 h. Each exposure time point had a
corresponding vehicle control. The emphasis of this exercise is on the
process of analysis rather than making specific claims about the nature of
the findings.
Normalization Using Midas

This step filters low‐quality spots using Spotfinder‐generated flags, nor-
malizes using block level Lowess and standard deviation regularization, and
finally applies a flip‐dye consistency filter. Because the same normalization
process is repeated for each flip‐dye pair (24 pairs), we will demonstrate the
process on only one pair of raw files from the study as an example. The two
files are contained in the sample data zip file and are labeled File_A_Sample
Cy5_RefCy3.mev (file ‘A’) and File_B_SampleCy3_RefCy5.mev (file ‘B’).

ftp://ftp.tigr.org/pub/software/Microarray/MeV/MIE_data/
http://www.tm4.org/midas.html
http://www.tm4.org/mev.html
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These files contain the same sample and reference material but with the dye
labels swapped.

Define the Analysis Pipeline

Open Midas by double clicking midas.bat in the midas directory. The
analysis will proceed as follows.

a. Read two sample .mev format files as a flip‐dye pair.
b. Execute Lowess (LocFit) normalization.
c. Execute standard deviation regularization (SD).
d. Perform the flip‐dye consistency filter and file merge.
e. Write result files.

Select the analysis buttons in theMidas interface to construct the pipeline by
referring to Fig. 15 as a guide to help identify the buttons for each step of the
process. If a button is hit in error, one can clear the graphical pipeline and
start again by clicking the left‐most button in the tool bar (Fig. 15).

Modify the Parameters

Once the analysis pipeline matches the one in Fig. 15, you are ready to
enter and modify the analysis parameters. Click on the first icon in the
FIG. 15. The graphical scripting interface in Midas with the sample analysis pipeline

indicates the order of processing operations.
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pipeline that controls file loading. The parameter panel in the upper right
will reflect available parameters. Select the input files by clicking on the
empty field (first table cell) in the parameter panel. Use the file selection
dialog to navigate to the analysis files and click on file ‘A’ and then ctrl‐
click on file ‘B’ to select the pair. Select the down arrow button to place the
pair of files in the selection area and hit the OK button. Note that multiple
file pairs can be analyzed by adding multiple pairs to the selection area.
Select the check boxes to use the flags to filter low‐quality data. Each of
these selections will prompt a request for a flag column identifier. Just
accept the default flag column header names. Review the parameters for
the other parts of the pipeline by clicking on each of the remaining icons.
Accept the default parameters for the other sections of the pipeline.

Select Output Reports

Select the Reports menu from the main menu bar and check the Create
PDF Reports option. NowMidas is set to output a text‐based result summary
as well as a customizable pdf format analysis summary. The summary will
contain input parameters, diagnostic plots, and numerical data related to the
output such as the number of retained spots after filtering. Just before the
analysis starts a dialogwill be presented to customize the PDF report. For this
example keep all graphs. When processing many files it is best to limit the file
output to the key plots for each analysis stage, as the PDF creation requires a
large amount of memory.

Execute the Analysis Pipeline

Select the Execute button to trigger execution. The final step is to select a
project folder for output and to specify the project file name to store the
pipeline and parameters. The progress of the analysis will be indicated in the
analysis log at the bottom of the interface. Once the analysis is complete the
diagnostic plots can be reviewed to assess the impact of the procedures.

Assessing the Results: The Investigation Panel

Open the Investigation panel by clicking on the tab just below the button
panel to useMidas to view diagnostic plots. Use the file tree on the left side to
navigate to the folders that contain the results. A right click on any plot will
open a menu to allow you to view or plot the output file. The folder labeled
raw contains the plots of data in its initial state. Plots of the same type can be
overlaid to view the effect of normalization by first plotting raw data and then
plotting normalized data. Some plots to try are histograms (.his) andR‐I plots
(.prc) in raw and post Lowess, box plots (.box) before and after standard
deviation regularization, and in the flip dye folder you can view the flip dye
diagnostic plots (.rrc) before and after filtering (Fig. 16).



FIG. 16. Box plots of raw data (left) and data after Lowess normalization and standard

deviation regularization (right). Note the centering effect of Lowess on block level mean log

ratios. The nearly equal span of the middle quartiles of each block reflects the variance

regularization following the SD regularization step.
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Statistical Analysis and Clustering Using MeV

Now that data have been normalized to remove systematic bias and
filtered to remove spots that are not expressed consistently we can use
MeV to perform statistical analysis, clustering, and functional analysis. Data
for this section started as raw mev files and were normalized and filtered as
described earlier. The processed files for both strains were loaded into MeV
in an order according to strain, exposure (control or experimental), and time
point. The resulting expression matrix was saved to a single file to help
streamline data loading for this example. The data file is in the sample data
zip file and is labeled CastEi_Balbc_combined_TDMS.txt.

Launching MeV, File Loading, and Adjusting the Display

Double click on tmev.bat to launch MeV. The multiple array viewer
can be resized to full screen by clicking on the maximize button in the
upper right corner of the window. Select Load Data from the File menu of
the multiple array viewer. The top part of the file loader interface will
have a drop‐down menu that is used to select the input file format. Select
the second menu option labeled Tab Delimited, Multiple Sample Files
(TDMS). Use the file navigation tree on the left to navigate to sample data
and select CastEi_Balbc_combined_TDMS.txt from the available files win-
dow. Selecting the file will present a portion of the file in the expression
table preview panel on the right. Click on the first expression value in the
upper‐left position of the expression values. For this file the value happens
to be NaN, as this value is missing or was filtered out. Selection of this table
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cell informs the loader that rows above and to the left are sample and gene
annotation. Click Load to load the data file.

The initial main view of the expression matrix will include sample names
that correspond to the original mev files. From the Display menu select
Sample/Column Labels and then Select Sample Label to Label by Sample
Description. The sample annotation now contains strain ID (C or B), condi-
tion (control or experimental), time, and replicate ID. To improve the
appearance of the expression matrix, modify the gradient scale limits by
using the Set Color Scale Limits option from theDisplaymenu. Set the lower
limit to –2.0 and the upper limit to 2.0.

Filtering out Missing Data

It is common tohave geneswithin loadeddata that have fewvalid intensity
measurements over the loaded samples. These rows with a lot of missing data
appear mostly gray in the expression matrix image. To filter these genes out,
open the Adjust Data menu and open the Data Filters menu and select the
Percentage Cutoff Filter option. Enter 85.0 in the input dialog to keep only
genes for which greater than 85% of the samples have values. A data filter
result nodewill be placed on the result tree to report the number of genes that
remain and to provide a view of the conserved rows. The log of the history
node will also report the filtering result. Note that 27,648 rows were loaded
and after applying the filter 20,048 rows remain for further analysis.

Statistical Analysis

Because there are two strains and two conditions, a 2 � 2 design two‐
factor ANOVA can be applied if we treat all time points as being in one
group.Hit the two‐factor ANOVAanalysis button to open the dialog. In the
first dialog label factor A as strain and factor B as condition and enter two
levels for each factor, as there are two strains and two conditions, control
and experimental. Advance to the next dialog to make group assignments.
Designate strain membership in the upper left panel by selecting group 1 for
all ‘C’ strain samples and group 2 for all ‘B’ strain samples. Designate
condition by placing all controls in group 1 and all experimental samples
in group 2 in the group selection panel on the right. Set the critical value of
p to 0.001. Near the bottom of the dialog select the check box to build HCL
trees on significant genes and hit the OK button.

AnHCL initialization dialog will come up to select parameters for HCL.
Deselect the option to make sample trees so that samples are not reordered.
Select the Pearson Correlation as the distance metric and hit OK.

Interaction significant genes from two‐factor ANOVA in the result
tree are those that show differences in response to exposure that are
dependent on strain. In this example this mostly consists of genes that
changed in the moderate responder strain B but not in the low responder
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strain C. One can view the various results by clicking on the viewer nodes
in the result tree.

Dissecting Significant Genes

To further explore the interaction significant genes, click on the HCL
viewer in theANOVA result for the interaction significant cluster. Right click
in theHCL cluster viewer and selectGene Tree Properties. Slide the slider bar
to the right until the number of terminal nodes is about twoor three. Select the
check box labeledCreate Cluster Viewers and hit OK. This will create clusters
that correspond to subtrees with the full HCL viewer. The viewer nodes
will be appended under the HCL viewer node on the result tree. Figure 17
shows the cluster centroid viewers that correspond to the two dominant
patterns in the interaction significant cluster where genes were upregulated
or downregulated in only the moderate responder strain B (Fig. 17).

Storing Clusters and Cluster Operations

A right click‐activated menu provides a Store Cluster option in most
cluster viewers that allows one to store clusters of interest to the cluster
manager. Open a viewer other than the HCL viewer that displays all signifi-
cant interaction genes, right click, and select Store Cluster. The cluster can be
assigned attributes such as a label and a description. Selection of a cluster
FIG. 17. Centroid graphs showing genes with a significant interaction effect. (Left) Mean

profile for 38 genes that were overexpressed in the high responder strain. (Right) Mean profile

for the 62 genes that were underexpressed in the responder strain. Error bars are �1 SD.

(Two‐factor ANOVA results, interaction significant genes, p < 0.001.)
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color is required and can be used to track the genes during analysis. Stored
clusters can be viewed in the cluster manager node’s gene cluster table above
themain analysis node in the result tree. Ifmultiple clusters exist fromvarious
results, one can use the cluster operations in the cluster manager to perform
cluster operations such as cluster unions, intersections, or exclusive OR.

Exploring Biological Themes

The EASEmodule can be used to investigate the biological roles within
a cluster of interest. All clusters stored in the cluster manager are candi-
dates for EASE analysis. The data directory of MeV has an EASE file
system to support the analysis of this data set. Select the EASE button
from the right end of the analysis tool bar or from the analysis menu. The
center portion of the dialog has three tabbed panels. The first panel is used
is to designate a population of genes and a cluster for analysis. Select the
Population from Current Viewer option to define the population. Select
the cluster to analyze by selecting a row in the cluster table. On the second
tab check that tc# is selected as the gene identifier. In the bottom portion of
the panel select the button to add annotation/ontology linking files and use
ctrl‐click to select the three GO files and the KEGG pathways file. Accept
the defaults for the statistical parameters panel by hitting OK. The result-
ing table will list all biological roles that were identified for the cluster, and
the roles will be ordered by the provided p value for each role. The GO
hierarchical viewer will show themes in a hierarchy of specificity. MeV’s
manual, slide presentation in the documentation/presentations folder, and
the EASE reference (Hosack et al., 2003) will describe the parameter
selections, theory basics, and the statistical details behind EASE analysis.

Further Analysis

The purpose of this section was to provide a basic sample analysis.
Various other tests can be run on this data set to extract other genes
of interest. The power of any analysis tool comes with the understanding
of the available analysis modules and features and how they can be used to
extract a variety of findings relevant to the study.
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