U.S. flag

An official website of the United States government

PMC Full-Text Search Results

Items: 5

5.
Fig. 1

Fig. 1. Constructing a network model from multiple ‘omic measurements. (A) We start with a probabilistic interactome that includes protein–protein interactions scored by the confidence of their interaction. This confidence score reflects the strength of evidence across multiple interaction databases and this score constrains the edge's capacity within our flow-based model. Higher confidence leads to higher capacity. Some of these proteins are transcription factors (triangles). We complement these edges with transcription-factor (triangles) to DNA (octagons) binding interactions. We predict these interactions and their edge probabilities by measuring active and open chromatin via ChIP-seq and looking for enrichment of transcription factor binding motifs. Conceptually, this is our available road map for creating pathways where the capacities are akin to speed limits. (B) We connect an artificial source node to all proteins that have corresponding shRNAs that were considered hits in the screen. These edge capacities reflect the strength of the shRNA effect. In our model, these edges reflect how strongly an shRNA depletes from input to morbidity. We connect an artificial sink node to differentially expressed mRNAs. These edges reflect the fold-change in expression. The algorithm introduces flow into the network and looks for an optimal route from the source to the sink, selecting edges based on available capacity. (C) The final path through the interactome becomes the de novo pathway. This pathway may or may not include all of the original inputs (e.g. differentially expressed mRNA or depleted shRNAs). Further, SAMNet allows the simultaneous construction of pathways for multiple conditions. In our investigation we treated the parallel in vitro and in vivo screens as separate conditions. (D) Screening design interrogates in vivo specific regulators of ALL progression. A genome-scale library was introduced to ALL cells in vitro. Representative samples were either maintained in culture or transplanted into mouse models. At time of morbidity, blood and culture samples were re-sequenced to measure shRNA representation.. From: Pathway-based network modeling finds hidden genes in shRNA screen for regulators of acute lymphoblastic leukemia †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ib00040a Click here for additional data file. Click here for additional data file. .

Jennifer L. Wilson, et al. Integr Biol (Camb). 2016 Jul 11;8(7):761-774.

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center