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Abstract

There is growing evidence in the epidemiologic literature of the relationship between air pollution 

and adverse health outcomes. Prediction of individual air pollution exposure in the Environmental 

Protection Agency (EPA) funded Multi-Ethnic Study of Atheroscelerosis and Air Pollution 

(MESA Air) study relies on a flexible spatio-temporal prediction model that integrates land-use 

regression with kriging to account for spatial dependence in pollutant concentrations. Temporal 

variability is captured using temporal trends estimated via modified singular value decomposition 

and temporally varying spatial residuals. This model utilizes monitoring data from existing 

regulatory networks and supplementary MESA Air monitoring data to predict concentrations for 

individual cohort members.

In general, spatio-temporal models are limited in their efficacy for large data sets due to 

computational intractability. We develop reduced-rank versions of the MESA Air spatio-temporal 

model. To do so, we apply low-rank kriging to account for spatial variation in the mean process 

and discuss the limitations of this approach. As an alternative, we represent spatial variation using 

thin plate regression splines. We compare the performance of the outlined models using EPA and 

MESA Air monitoring data for predicting concentrations of oxides of nitrogen (NOx)—a pollutant 

of primary interest in MESA Air—in the Los Angeles metropolitan area via cross-validated R2.
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Our findings suggest that use of reduced-rank models can improve computational efficiency in 

certain cases. Low-rank kriging and thin plate regression splines were competitive across the 

formulations considered, although TPRS appeared to be more robust in some settings.
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1. Introduction

There is growing evidence in the epidemiologic literature of the relationship between air 

pollution and adverse health outcomes. Early findings were based on somewhat crude 

regional, and possibly temporally specific, assignment of exposures [Dockery et al. (1993), 

Pope et al. (2002), Samet et al. (2000)]. Yet, methods for assigning individual exposure to 

cohort study participants have become much more sophisticated. Recent studies have 

assigned individual exposure using the value measured at the nearest monitoring location 

[Miller et al. (2007), Ritz, Wilhelm and Zhao (2006)]; using “land use regression” estimates 

based on spatially distributed or Geographic Information Systems (GIS) based covariates 

[Brauer et al. (2003), Hoek et al. (2008), Jerrett et al. (2005a)]; and by interpolation with 

geostatistical methods such as kriging and semi-parametric smoothing [Jerrett et al. (2005b), 

Künzli et al. (2005), Paciorek et al. (2009)].

Motivated by the Multi-Ethnic Study of Atheroscelerosis and Air Pollution (MESA Air) 

study [Kaufman et al. (2012)], Szpiro et al. (2010), Sampson et al. (2011) and Lindström et 

al. (2013) developed a flexible spatio-temporal prediction model based on monitoring data 

from existing regulatory networks as well as supplementary MESA Air monitoring data to 

predict concentrations for individual MESA cohort members. This work integrates land-use 

regression with kriging to account for spatial dependence in pollutant concentrations. 

Temporal variability is captured using temporal trends estimated via sparse singular value 

decomposition and temporally varying spatial residuals [Fuentes, Guttorp and Sampson 

(2006), Sampson et al. (2011), Szpiro et al. (2010)].

In general, spatio-temporal models are limited in their efficacy for large data sets due to 

computational intractability. For example, in the purely spatial setting, computation typically 

is of the order (n3), where n is the number of spatial locations. The computational effort for 

log-likelihood evaluation of the MESA Air spatio-temporal model typically grows at least as 

fast, but slower than (N3), where N is the total number of spatio-temporal observations 

[Lindström et al. (2013)]. Methods for reducing the computational burden in spatio-temporal 

models are becoming more common in the spatial statistics literature. Several authors have 

proposed dynamic frameworks for modeling residual spatial and temporal dependence, 

although these approaches continue to suffer from computational intractability [Gelfand, 

Banerjee and Gamerman (2005), Stroud, Müller and Sanśo (2001)]. In the large spatial data 

context, approximate likelihood and sampling-based approaches have been proposed to 

reduce computational burden [Fuentes (2007), Pace and LeSage (2009)]. An alternative to 

approximate methods involves reducing the spatial process to a K-dimensional subspace (K 

≪ n) in order to increase computational efficiency [Banerjee et al. (2008), Crainiceanu, 
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Diggle and Rowlingson (2008), Kammann and Wand (2003), Nychka and Saltzman (1998), 

Stein (2007, 2008)]. These so-called “low-rank” or “reduced-rank” approaches can reduce 

computation to (K3).

In the current work, we develop reduced-rank versions of the spatio-temporal model 

outlined in Lindström et al. (2013), Szpiro et al. (2010). Specifically, we apply the approach 

proposed by Kammann and Wand (2003) to achieve low-rank kriging to account for spatial 

variation in the mean process and spatially varying temporal trends. We discuss the 

limitations of this approach and, as an alternative, represent spatial variation using thin plate 

regression splines [Wood (2003)]. We compare the performance of the outlined models 

using Environmental Protection Agency (EPA) and MESA Air monitoring data for 

predicting oxides of nitrogen (NOx) concentrations in the Los Angeles metropolitan area.

2. Description of data

2.1. Air Quality System (AQS)

The national AQS network of regulatory monitors, managed by the EPA, reports 

concentrations of a wide variety of air pollutant concentrations on an ongoing basis, most 

typically hourly averages. For this study, we include NOx measurements from 21 AQS 

monitors in the Los Angeles area, one of six metropolitan areas where MESA Air cohort 

members live. Monitor locations are shown in Figure 1 (left). As MESA Air supplementary 

monitoring is done at the 2-week average scale, we aggregate AQS monitoring data to 2-

week averages. Due to skew in the data, all 2-week averages are log transformed.

2.2. MESA Air

As part of the MESA Air project goals to provide high quality individual exposure 

prediction, additional monitoring data were collected in each of the study's six geographic 

regions, including Los Angeles. The goal of the supplementary monitoring was to provide 

geographically complementary data to the AQS monitoring data and to systematically span 

the design space based on proximity to traffic. Additionally, supplementary monitoring data 

included measurements collected at a subset of cohort participant homes. The sampling 

strategy is described in more detail by Cohen et al. (2009).

The MESA Air supplementary data is comprised of three classes of monitors, which we 

refer to as “fixed site,” “home outdoor” and “community snapshot.” There are a total of five 

“fixed sites” included in this study in the Los Angeles area. These “fixed-sites” began 

measuring 2-week average concentrations in November of 2005, for a total of 426 

measurements by June 1, 2009. A total of 84 “home outdoor” locations were included in this 

study. These sites were sampled during 2-week periods starting in May of 2006 and ending 

in February of 2008, for a total of 155 measurements. The sampling plan calls on each home 

to be measured two times during different seasons. Last, the “community snapshot” sub-

campaign consists of 177 sites measured in three rounds of spatially rich sampling during 

single 2-week periods from July 5, 2006 to January 1, 2007, for a total of 449 

measurements. In each round of the “community snapshot” monitoring, most monitors were 

clustered in groups of six, with three on each side of a major roadway at distances of about 

50, 100 and 300 meters, and locations were chosen to span the domain of various land-use 
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categories and to cover a wide geographic region. All MESA Air monitoring locations as of 

June 1, 2009 are displayed in Figure 1. Likewise, temporal coverage and sampling 

frequency during the study period for each monitoring location and type is depicted in 

Figure 2. Table 1 provides summary statistics on the native and log-scales for both EPA and 

MESA Air data.

2.3. GIS

In addition to the monitoring data, spatial prediction at locations where there are no 

measurements rely heavily on GIS-based covariates and so-called “land-use regression” 

techniques [Jerrett et al. (2005a)]. In this paper, we considered a limited set of geographic 

covariates: (i) log distance to A1, A2 or A3 roadway [TeleAtlas (2000)], (ii) log 

Caline3QHCR point predictions averaged over 9 kilometer buffer [Eckhoff and Braverman 

(1995)], (iii) distance to nearest coast [TeleAtlas (2000)], (iv) distance to city hall [TeleAtlas 

(2000)], (v) normalized difference vegetation index averaged over 250 meter buffer [Carroll 

et al. (2004)], (vi) log elevation, and (vii) percent impervious surface in 50 meter buffer [Fry 

et al. (2011)].

3. Methods

3.1. Review of full-rank spatio-temporal model

The existing spatio-temporal model as initially described by Szpiro [Szpiro et al. (2010)] 

takes the form

where y(s, t) is the log two-week average of pollutant measurements at location s and time t, 

μ(s, t) is the mean field and ν(s, t) is the residual field. The mean field, μ, is defined as a 

linear combination of temporal basis functions with spatially varying coefficients. The 

spatially varying coefficients are comprised of a land-use regression component in addition 

to spatially structured random fields. These coefficients capture spatial heterogeneity in the 

amplitude of the temporal basis functions. As such, the mean field is written as

where the Xj are design matrices containing GIS/land-use covariates of dimension n × (pj + 

1), where n is the total number of observed sites and αj is a vector of regression land-use 

regression coefficients of dimension pj + 1 × 1. The βj(s) where s = (s1, …, sn) are Gaussian 

spatial random fields distributed as
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Here, Σβj (θj) is the covariance matrix of dimension n × n indexed by the vector of 

parameters θj. Generally, we assume a spatial exponential decay model with range ϕj and 

partial sill . The ψj(s) are i.i.d. random effects distributed as

Note ψj(s) can equivalently be thought of as the nugget for the βj(s)-field. The original 

formulation of this model did not include a provision for a nugget [Szpiro et al. (2010)], 

although more recent work allowed for but did not utilize this parameter [Lindström et al. 

(2013)]. We later discuss the implications of excluding the nugget for computation and 

predictive performance.

The fj(t) are temporal basis functions with f1(t) ≡ 1 for all t (typically m is small, ≤3) 

estimated by modified singular value decomposition. See Fuentes, Guttorp and Sampson 

(2006), Szpiro et al. (2010), Sampson et al. (2011) for a more thorough discussion of trend 

estimation. Figure 3 depicts these smooth temporal basis functions and their fit to the EPA 

and MESA Air NOx monitoring data at two sites.

Last, we specify the model for the residual field, ν(s, t). Consistent with Lindström et al. 

(2013), Szpiro et al. (2010), Sampson et al. (2011), we assume that the mean model accounts 

for the mean structure and all temporal correlation. Thus, the spatio-temporal residuals are 

assumed to have zero mean and to be independent in time, so that

where  is a covariance matrix of dimension nt × nt and nt is the number of sites 

observed at time t with Σt nt = N, the total number of observations. Once again, we assume 

that the ν field follows a spatial exponential decay model with range ϕ, partial sill τ2 and 

(possibly) nugget σ2.

A concise representation of this model is given as

(1)

where Y is an N × 1 vector of stacked responses y(s, t) (first varying s then t), F = (fst,is′) is 

an N × mn matrix that has elements
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X is a block diagonal matrix with diagonal blocks , α is an 

stacked vector of the αj, B is an mn × 1 vector of the stacked βj, P is an mn × 1 vector of the 

stacked nuggets, ψj, and V is an N ×1 vector of the stacked ν (first varying s then t). This 

model is thus indexed by the land use regression coefficients, α, and the covariance 

parameters

To simplify notation, we collect the covariance parameters into the vector Ξ = (θB, θP, θV). 

In the remainder of the manuscript, for the sake of brevity we suppress the dependence of 

covariance matrices on their respective parameters, except where an explicit dependence is 

illustrative.

Model (1) is typically fit using profile maximum likelihood methods, although full 

maximum likelihood and restricted maximum likelihood approaches are also possible 

[Lindström et al. (2013)]. Sampson used a multistage “pragmatic” approach to fitting (1) and 

generating predictions [Sampson et al. (2011)]. Lindström adapted the model to allow for 

time-varying covariates, although this extension is not presented here [Lindström et al. 

(2013)]. This model is implemented in the R-package, SpatioTemporal, available at http://

cran.r-project.org/package=SpatioTemporal.

3.2. Motivation for reduced-rank spatial smoothing

Although the above formulation of the model has been successful for predicting air pollution 

concentrations, we note two limitations of this formulation, particularly with respect to the 

β-fields. First, we note that it is not natural to interpret the β-fields as random effects since it 

is difficult to imagine the data generating mechanism that might give rise to such fields 

[Hodges and Clayton (2011), Hodges (2013)]. Second, the range parameters in the β-fields 

tend to be challenging to estimate in practice. Moreover, Zhang showed that in the case of 

spatial generalized linear mixed models, this quantity is not consistently estimable [Zhang 

(2004)].

As such, we consider a spline-based representation of the β-fields in the mean model. To 

motivate, we note that the Gaussian spatial β-fields, as defined above, can be represented as 

spatial splines as follows. Let

where Ω is a matrix such that
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and  is the set of observed spatial locations. For the exponential model, C(r) =exp{−|r|/ϕ}. 

It follows that the β-fields can be expressed as

where . The n columns of the matrix Ω1/2 represent n spatial basis 

functions indexed by the parameter ϕj. Written as such, the β-fields can be viewed as 

random linear combinations of spatial basis functions. Exploiting the connection between 

linear mixed models and penalized splines, we can view the βj-fields as penalized spatial 

splines with smoothing parameters  [Ruppert, Wand and Carroll (2003)]. Having 

represented the β-fields as penalized splines, it is natural to consider penalized reduced-rank 

splines instead as a means of improving model performance and computational efficiency.

We note that an analogous argument can be made for the residual field. However, it is also 

the case that the ν-field is well understood within the traditional framework of random 

effects models. That is, the ν-field captures extra random spatial variation that arises from 

time point to time point. Furthermore, the range parameter in the ν-field tends to be more 

stably estimated in practice due to the repeated measurements over time.

In the following sections, we describe reduced-rank representations of the β-fields using 

low-rank kriging and thin plate regression splines.

3.3. Low-rank kriging

We follow the approach outlined by Kammann and Wand (2003) and Ruppert, Wand and 

Carroll (2003) for low-rank kriging (LRK) of the β-fields. Specifically, LRK is achieved by 

replacing Ω with ZΩ−1Z⊤, where

and  is the set of spatial knot locations, κ, of cardinality K ≪ n. It follows that we can 

approximate βj(s) by ZΩ̃−1/2δj, where δj is now a K-vector distributed as 

. We note that this approach bears strong resemblance to the predictive 

processes presented by Banerjee [Banerjee et al. (2008)]. In fact, Banerjee noted that LRK is 

a re-projection of his predictive process. As such, these approaches are computationally 

identical despite the fact that the predictive process is derived formally from a full-rank 

parent process.
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Letting  and B̃ be the stacked vector of δjs, we can express the spatio-

temporal model as

(2)

Model (2) can be re-expressed as

Where

ΣB̃ is a block-diagonal matrix with diagonal elements , ΣP is a block-diagonal 

matrix with diagonal elements , and ΣV is a block-diagonal matrix with diagonal 

elements . The log-likelihood is given by

Consistent with Szpiro et al. (2010), Lindström et al. (2013), we estimate regression 

coefficients α using the profile maximum likelihood. It is easy to show that

so that the profile log likelihood is simplified to

(3)

and the remaining parameters are estimated as those quantities that maximize (3). We 

estimate all parameters using the L-BFGS-B algorithm as implemented in the optim 

function in stats package in R. This is an iterative method that allows for box constraints 

on all parameters [Byrd et al. (1995)].

Prediction is achieved by assuming a joint distribution between observed data Y and 

unobserved data Y*,
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where Σ̃
** is the covariance of Y* and Σ̃

·* is the cross covariance of Y and Y*. Predictions 

are based on the conditional expectation E[Y*|Y] with MLEs plugged in, namely,

with conditional prediction variance

A drawback of LRK is the dependence of the basis functions on the range parameters ϕj, j = 

1, …, m. Kammann and Wand, for purely spatial data, address this issue by fixing the value 

of this parameter at the maximum spatial distance observed in the data [Kammann and 

Wand (2003)]. Although it is attractive to condition on fixed spatial basis functions, 

arbitrary selection of these parameters could lead to worse predictive performance. The 

range parameters can be estimated from the data, albeit at the expense of more challenging 

numerical optimization and with the caveat that they may not be consistently estimable 

[Zhang (2004)].

An alternative approach which sidesteps these issues and leverages the spatial spline 

formulation calls for the use of alternative spline bases. Thin plate regression splines are a 

popular alternative, and we explore their application in the current problem below.

3.4. Summary of thin plate regression splines

Thin plate regression splines (TPRS) present an alternative to the LRK approach and 

mitigate the issue of estimating the range parameter(s) [Wood (2003)]. Although these 

models are widely used (implementation is available in the R package mgcv, e.g.), we 

briefly summarize the approach with the goal of describing parallels between TPRS and 

LRK.

Assume that we wish to estimate the function f based on (purely spatial) observations Y at 

locations s = (s1, s2) such that

by minimizing this penalized objective function
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It can be shown that the solution is given by

(4)

where the ιj are linearly independent polynomials spanning the space of polynomials in ℛ2 

(of degree less than 2) and η(r) = 2−3π−1r2log(r). Further, ζ and γ are fixed unknown 

coefficients subject to the constraint T⊤)ζ = 0 with Tij = ιj(si) [Green and Silverman (1994)].

Let E be a matrix so that Eij = η(‖si − sj‖). Wood presents a reduced-rank approximation of 

this problem, which is the solution to the unconstrained optimization problem

where ζ* is a K − 3 × 1 vector of fixed unknown coefficients, UDU⊤ is the 

eigendecomposition of E so that the n columns of U are equal to the eigenvectors of E 
ordered by their associated eigenvalues from largest to smallest, D is a diagonal matrix of 

these eigenvalues, UK is a matrix of the first K columns of U, and DK is a matrix of the first 

K rows and columns of D. Last, WK is a K × K − 3 orthogonal column basis such that 

T⊤UKWK = 0 (to account for the constraint) [Wood (2003)].

It is easy to see that this unconstrained optimization is equivalent to fitting the linear mixed 

model

where , and . Equivalently, 

let , where , then the above equation becomes 

the following:

3.5. Formulation of β-fields as thin plate regression splines

We consider modeling the β-fields as TPRS using the relationship between penalized splines 

and mixed models [Ruppert, Wand and Carroll (2003)]. Following the above formulation, 
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we can approximate βj(s) in (1) as , where T contains the spatial coordinates of 

the monitoring locations, γj is a 2 × 1 vector of fixed unknown coefficients, 

, and  is a K − 3 × 1 vector distributed as 

.

We can succinctly incorporate this approximation into our modeling framework as follows. 

First, augment the design matrices Xj by appending the matrix T so that  for j = 

1,…, m (if Xj already contains the spatial coordinates as predictors, then this step is 

unnecessary). Additionally, append the vector γj to the αj so that  for j = 1,…, 

m. Last, letting  be a block-diagonal matrix with diagonal elements  and α* and 

B̃* be the stacked vectors of  and  for j = 1,…, m, respectively, we formulate the TPRS 

version of the spatio-temporal model as a linear mixed model, as follows:

(5)

We note the similarities between equations (2) and (5). In fact, Nychka showed that thin 

plate splines are equivalent to kriging using a generalized covariance function [Nychka 

(2000)]. It is clear that the difference between LRK and TPRS has to do primarily with the 

choice of basis functions. However, we also emphasize that the TPRS bases are not 

dependent on any additional (e.g., range) parameters. Estimation of model parameters and 

prediction follows as described in Section 3.3.

4. Computational considerations

Evaluation of (3) directly is computationally intensive, with the number of computations 

growing as (N3). However, the computational burden can be eased considerably by taking 

advantage of the block-diagonal nature of the ΣB and ΣV. Namely, Lindstrom showed that 

reformulation of (3) can reduce the computational burden to (m3n3) [Lindstrom et al. 

(2013)]. Typically, low-rank models boast a computational advantage over their full-rank 

counterparts. Yet, reducing the computational burden in spatio-temporal data is nuanced. In 

the following, we discuss how the formulation of the β-fields using either LRK or TPRS 

impacts computation. We illustrate the computational burden of calculating (3) by 

considering the determinant term |Σ̃|, employing a similar reformulation to that employed in 

Lindstrom et al. (2013) to exploit the block diagonal nature of ΣB and ΣV. Proofs of the 

following results and the corresponding reformulation of the full likelihood in (3) are 

provided in the Online Supplement [Olives et al. (2014)].

By application of known identities, it can be shown that
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(6)

For highly unbalanced data like that which we typically encounter in MESA Air, (6) is 

dominated by the calculation of . Computation of this component grows 

at (m3n3), the same rate as the full-rank model.

As mentioned, the full-rank spatio-temporal model originally published by Szpiro did not 

include the nugget, P, in the β-fields [Szpiro et al. (2010)]. When the nugget is not present, 

the determinant |Σ̃| reduces to

(7)

Interestingly, in (7), computation will generally be dominated by calculation of 

, which grows at (m3K3). This makes it clear that, when the 

nugget is not present, reducing the rank of the β-fields can lead to some improvement in 

terms of computation. We note that in the case where the data are more balanced, it is 

possible that computation of |ΣV| (or, equivalently, ), which grows at , will 

dominate computation in both cases.

In Figure 4, we plot the CPU time required for optimized log-likelihood evaluation in full-

rank and reduced-rank models with K = 25 with and without the nugget present for both 

LRK and TPRS. We see that for LRK and TPRS, as the number of sites increases, full-rank 

models take large steps in computation time required, whereas reduced-rank models grow 

much more slowly when a nugget is not present. However, there is very little difference in 

computational growth between full- and reduced-rank models as the number of sites 

increases when the nugget is present.

5. Application to NOx, monitoring data in Los Angeles

We apply the proposed reduced-rank spatio-temporal models to NOx, data collected in the 

Los Angeles area as part of the MESA Air monitoring campaign and via the EPA regulatory 

network.
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5.1. Models considered

We fit a variety of models to the data which vary in three aspects: (1) the choice of spline 

basis, (2) the rank of β-field smooth, and (3) the inclusion of the nugget. In all models 

considered, we employ two time trends (m = 2) as depicted in Figure 3. Likewise, the 

residual ν-field is always specified as exponentially distributed with a nugget. And, last, all 

of the GIS covariates are present in each of the Xj matrices.

5.1.1. Choice of spline basis—We have outlined two possible classes of spline bases, 

exponential (used in LRK) and thin plate splines. As previously indicated, the use of 

exponential basis functions requires handling of the range parameters in each of the β-fields 

by either fixing its value at some ad hoc data-derived value or through full optimization. To 

investigate the trade-off between optimization of an additional range parameter and fixing 

this parameter at an arbitrary conservative value, we assume the range parameters in the β-

fields are both fixed, and in separate models that they are estimated. To assess the sensitivity 

to the fixed value, we set the range parameters in all fields equal to the maximum, one half, 

one quarter and one eighth of the observed maximum spatial range in the data (80.7 km). 

Additionally, to assess the sensitivity of model performance to the choice of spline basis, we 

fit TPRS smooths to the β-fields.

5.1.2. Rank of smooth—As a general rule of thumb, Ruppert, Wand and Carroll suggest 

that the number of knots, K, be chosen as max(20, min{150, n/4}) [Ruppert, Wand and 

Carroll (2003)]. In the case of our MESA Air and EPA data, this would result in K = 71. 

Although this rule of thumb is convenient, it is unclear how the number of knots in the 

spatial component of the mean model will influence spatio-temporal prediction. For our 

purposes, we explore a variety of different ranks on spatio-temporal prediction, K = 287, 

100, 50 and 25. We note that the models with K = 287 correspond to full-rank models.

Knot location can also play an important role in LRK. Kammann and Wand choose knot 

locations using efficient space-filling algorithms [as implemented by the cover. design () 

function in the R package fields] [Kammann and Wand (2003)]. In our primary 

investigations, we choose knot locations using space-filling of monitoring sites within the 

study area (see Figure 5). Although space-filling of observed locations is a convenient 

approach to choosing the knot locations in our analysis, it is natural to consider knots chosen 

at alternative locations. For example, an attractive option could be to specify knot locations 

on a regular grid over the study area. To investigate, in addition to the primary analysis, we 

also fit models where knot locations are chosen using space-filling of a regular grid of the 

convex hull of the study region, where each grid cell is approximately 2.5 kilometers on 

each side (see Figure 5).

5.1.3. Nugget effect—Given the analytical findings suggesting that reduced-rank 

modeling leads to a computational advantage in the case when the nugget is not present, we 

fit models both with and without the nugget. However, we note that while analytically 

feasible, models which exclude the nugget from the β-fields are less conceptually defensible. 

Namely, exclusion of the nugget from the β-fields makes it difficult for the model to capture 

fine-scale variability in the mean process. Moreover, preliminary investigations showed that 
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very low-rank smooths in models without a nugget in the β-fields were unstable. As such, 

we present a limited set of results for reduced-rank models where the nugget is not present.

5.2. Model validation

We employ cross-validation to assess model predictive performance. Our primary interest is 

in prediction of long-term averages of NOx concentrations. Unfortunately, in this data set 

there are only 26 AQS and/or MESA “fixed sites” that provide adequately long time-series 

for long-term average validation. These sites tend to be more homogeneous in their 

geographic covariate distribution and have larger spatial spread when compared to MESA 

participant locations, which could potentially limit our ability to adequately assess predictive 

performance.

As such, in addition to cross-validation of AQS and MESA “fixed sites,” we also consider 

cross-validation of MESA “community snapshot” and “home outdoor” sites. We apply 

tenfold cross-validation to each type of monitor. In each of these three scenarios, all 

remaining data are used to estimate model parameters and to predict at left-out locations.

Due to the varying nature of sampling at sites in each of the three scenarios, Lindström 

suggests calculating RMSE and R2 slightly differently in each case [Lindström et al. 

(2013)]. At “fixed”/AQS sites, we calculate RMSE and R2 metrics on both the 2-week and 

long-term average scales. Long-term averages at left-out sites are computed only over times 

where data are observed, so that

The cross-validated R2 on the long-term average scale is given by [Szpiro, Sheppard and 

Lumley (2011)]

(8)

For the second scenario, we perform cross-validation of the “community snapshot” 

locations. We cross-validate all three sampling periods/seasons simultaneously and calculate 

cross-validated RMSE and R2 by season. Doing so allows us to assess the spatial predictive 

ability of the model across multiple seasons. Likewise, as each of the “community snapshot” 

locations were sampled during the same two-week periods, we can view the resulting 

metrics as representative of the pure spatial predictive capacity of the model.

Last, we also consider cross-validation of “home outdoor” sites. As the “home outdoor” sites 

are repeatedly sampled over time and typically at different time points, much of the R2 is 

likely to reflect a temporal signal, which is strong in these data. As such, in addition to the 

raw cross-validated R2, we also consider a de-trended version of the R2 where the variance, 

Var(c(s)), in (8) is replaced by the variance of observations after removing the predictions 
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from a reference model that accounts for (some) temporal variability. Here, we use a 

reference model based on the spatial average of measurements at AQS/“fixed sites” at each 

time point. Thus, the de-trended R2 represents the improvement in performance of our 

models compared to central site predictions commonly used in air pollution epidemiology 

studies [Pope et al. (1995)].

5.3. Comparison with other reduced-rank spatio-temporal models

Although the current model was developed specifically to address the complexities arising 

in the context of MESA Air, a number of other methods for reduced-rank spatial and spatio-

temporal modeling have been published, including fixed-rank filtering, Gaussian Markov 

random field approximations, covariance tapering, predictive processes and generalized 

additive models. Unfortunately, fixed-rank filtering is not available in an off-the-shelf 

package, and implementing this model for these data is a project unto itself. We further note 

that the application of Gaussian Markov random field approximations and covariance 

tapering in this setting is nuanced and may not result in any computational savings for these 

data. See the Online Supplement [Olives et al. (2014)] for further discussion of the 

application of these two approaches in the current modeling framework.

As mentioned previously, there appears to be an explicit correspondence between predictive 

processes and LRK, as noted in Banerjee et al. (2008). As such, formally modeling the β-

fields in (1) as reduced-rank predictive processes would not provide any additional insight 

into this work. That being said, one version of a predictive process spatio-temporal model is 

implemented in the spBayes package in R. Namely, the function spDynLM fits the 

following model:

The spatial process wt, here assumed to be exponential, can be replaced with a predictive 

process of reduced rank to reduce computational burden. This model significantly deviates 

from our own and may not perform well in the context of such highly imbalanced data as 

that which we analyze here. Nevertheless, we apply it to our data in an effort to make a fair 

comparison between published approaches to reduced-rank spatio-temporal modeling and 

our method. Specifically, we fit two models:

1. full-rank model (K = 287) for all wt fields, and

2. reduced-rank (K = 50) for all wt with knots chosen on a grid.

We note that the spDynLM function requires that knots be chosen on a grid when utilizing 

the reduced-rank predictive process machinery. In both cases, we fit the models assuming 

the following priors for the θt, Ση, :
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These priors are largely based on the example code available in the spDynLM 

documentation, with some small changes to reflect the data. Model predictions were the 

median of 500 posterior draws, after a burn-in period of 1500. We cross-validated these 

models for “fixed sites” using the same cross-validation groups as before.

Last, for an additional comparison with methods available in off-the-shelf software, we 

considered a generalized additive model that reformulates the mean process μ(s, t) without 

resorting to a dynamic model. Namely, we replaced μ(s, t) with the following:

Here both g and h are modeled using TPRS. For investigating models with spatial rank of K, 

we set the degrees of freedom for g equal to K and the degrees of freedom for h equal to K × 

14 (e.g., when K = 50, h has 700 df), where 14 is the number of years represented in the 

data. Note that both g and h can be viewed as penalized regression splines with structure 

similar to what we outline in the paper. But for h, we are now assuming a nonseparable 

model for space and time which differs from the tensor product approach used in our model. 

Moreover, we do not rely on predefined temporal basis functions to model time. The ηt are 

i.i.d. Gaussian random effects that capture nonsmooth temporal variation. Note that the ν-

field remains the same as outlined in the paper. We fit this model using the gamm function 

in the mgcv package in R.

6. Results

6.1. Performance of proposed reduced-rank models in LA

Table 2 shows the results of the cross-validation at “fixed sites” for models when the nugget 

is present. For LRK models, the choice of range does not appear to be a strong determinant 

of the predictive performance, with fully optimized models performing nearly as well as 

those models with the range parameter fixed at various values. Likewise, TPRS models 

exhibit highly competitive predictive performance with a slight edge over LRK models at 

lower ranks for long-term averages. Cross-validated R2 values stay relatively consistent 

across ranks until K = 25, at which point both 2-week and long-term average predictive 

scores drop off. In all cases, models with some spatial smoothing (K > 0) perform better than 

models without any smoothing (K = 0).

Table 3 show the results of cross-validation at “community snapshot” sites. We typically see 

the best performance in the Winter as compared with the Fall and Spring seasons. Once 

again, there appears to be little difference in model performance as the choice of range 

parameters varies. TPRS models continue to compete strongly with LRK models. The rank 
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of the β-field smooth does not tend to influence performance heavily, although again spatial 

smoothing at any rank does tend to improve predictive performance.

Table 4 shows the results of the cross-validation study at “home outdoor” locations. Here, 

the choice of range parameter model appears to have even less of important role locations 

than it did at “fixed sites.” Namely, cross-validated RMSE increases only slightly, resulting 

in a minimal decrease in R2, as the rank decreases in the raw home predictions. Detrended 

R2 did show some decay as the rank decreased, but still remained relatively high. TPRS 

models performed as well as LRK models across ranks. Again, models with some spatial 

smoothing outperformed those models with no smoothing.

Figure 6 compares the cross-validated R2 for a set of models of rank K = 287, 100, 50 and 

25 with and without the nugget present in the β-fields at AQS/“fixed sites,” “community 

snapshot” and “home outdoor” locations. Note, for LRK results, the range parameter has 

been estimated from the data. The figure suggests that while full rank models (K = 287) are 

comparable across these two specifications, predictive performance of models without the 

nugget in the β-fields tend to drop off rapidly as the rank of the smooth decreases, 

particularly in the case of LRK, where in select cases the R2 decreases to zero when K = 25. 

TPRS models tend to be more robust, although the decrease in R2 in TPRS models without a 

nugget tends to be greater than in TPRS models with a nugget.

Figure 7 compares the results of fitting full and LRK models to the MESA Air data when the 

knots were chosen using space-filling of either monitoring locations or a regularly spaced 

grid of locations. Generally speaking, models where knots were chosen at monitoring sites 

performed better than those where knots were chosen at grid locations.

6.2. Performance of other reduced-rank spatio-temporal modeling methods

We found that the spDynLM implementation did not work well for our data, possibly due to 

the large imbalance across space and time. In both models (K = 50, 287), the time-varying 

range parameter was not well identified and varied significantly, thus resulting in poor 

characterization of the rate of spatial decay. The temporal sparsity of the data may also have 

contributed to the poor performance due to the dynamic nature of the model's temporal 

trend. While the in-sample fits for these models are quite good, the out-of-sample 

predictions are highly variable, resulting in cross-validated R2 equal to zero for all scenarios 

considered. In Figure 8 we show the scatter plots of observed and predicted values in fitted 

models. The histograms in this same figure represent the distribution of predictions at 

unobserved times and locations. We note that these are on the log-scale, so that when 

exponentiated to the native scale, many predicted values at unobserved times/locations are 

extremely large.

The results of our gamm implementation were only marginally better. While the in-sample 

fits of this approach were more promising (see Figure 9), the predictions were nowhere near 

the caliber of those achieved using our model. Inspection of the residuals suggests that there 

remains significant temporal correlation that is unaccounted for by the mean model. We 

found that the cross-validated R2 was equal to 0 on both the two-week and long-term 

average scale using this approach. This low R2 was driven by the presence of outlying 
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predictions for a handful of sites in two different cross-validation groups. Additionally, the 

model failed to converge for a single cross-validation group.

7. Discussion

This paper focuses on presentation of LRK and TPRS representations of the mean process in 

the spatio-temporal model proposed by Szpiro et al. (2010), Sampson et al. (2011), and 

Lindström et al. (2013). Our approach allows for a reduced-rank representation of the β-

fields in the mean process of the original model, which tends to be the most time-consuming 

piece to evaluation in likelihood optimization. In certain cases, we have shown that such 

reduced-rank representations of the β-fields can lead to a computational advantage over the 

full rank specification. Namely, when the nugget of the β-field is not present, we have 

shown that our low-rank approach leads to slower growth in the CPU time required for 

likelihood evaluation.

The formulation of the β-fields in the mean process of the model as spatial splines is 

attractive for a number of other reasons. For example, oftentimes predictions of air pollution 

concentrations are used as inputs into health models to estimate health effects. Typically, the 

predictions are based on spatially misaligned data and ignoring this fact can lead to biased 

results and overly optimistic standard errors [Szpiro, Sheppard and Lumley (2011)]. The 

expression of the β-fields as splines places GIS covariates and spatial smoothing on more 

equal footing. Namely, in this form we can think of the GIS covariates and the spatial basis 

functions as unpenalized and penalized spatial covariates, respectively. This interpretation 

leads to a more coherent approach to measurement error correction for spatially misaligned 

data [Szpiro and Paciorek (2013)]. It is also important to note that the computational 

advantage gained in log-likelihood evaluation extends analogously to prediction, thus 

reducing computation time needed to predict at potentially many new locations.

For LRK models, we explored the choice of range parameters of prediction, ranging from 

the case where the range was fully estimated from the data to the case where it was fixed at 

an arbitrary conservative value indicated by the data. In the scenario when the range 

parameter is fixed, we showed that the original specification of the full-rank model can also 

be interpreted as a standard penalized spatial spline.

Likewise, we discussed the parallels between kriging and TPRS. We emphasize that a 

limitation of the kriging basis functions is the reliance on the range parameter and that TPRS 

is not subject to the same limitation. That being said, we note that there is an equivalence 

between thin plate splines and kriging using a Matern-covariance with infinite range [Wahba 

(1981), Nychka (2000), Kimeldorf and Wahba (1970)]. As such, one might view the use of 

TPRS as making an implicit assumption about the range parameter. The fact that TPRS and 

LRK were competitive in our results indicates that TPRS is a valid and attractive option for 

spatial smoothing in these models. To further this argument, we performed additional 

analyses (results included in the Online Supplement [Olives et al. (2014)]) comparing out-

of-sample prediction variances and AIC as a means of model selection. These analyses 

indicated that TPRS models tended to result in more stable prediction variances across rank 

specification when compared to LRK models. However, there was little notable difference 

Olives et al. Page 18

Ann Appl Stat. Author manuscript; available in PMC 2016 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between AIC values in LRK and TPRS models. Rather, AIC values indicated full-rank LRK 

models were preferable to reduced-rank ones in all cases. TPRS models with K = 100 had 

the lowest AIC.

Our approach to model assessment relies on cross-validation. As we are primarily interested 

in prediction of long-term averages, the cross-validation approach outlined isolates the 

spatial predictive capacity of the models. We applied our approach to ambient MESA Air 

and EPA NOx data collected in the Los Angeles area as well as traditional road covariates 

and Caline point predictions models. We found that generally speaking, the choice of the 

range parameter in the LRK exponential spatial basis functions had little impact on the 

model performance. In fact, reducing the rank of the model tended to also have little impact 

in most cross-validation scenarios for ranks of moderate size (K = 50, 100). We note that the 

recommendation of Ruppert, Wand and Carroll (K = 71 for the MESA Air data) falls 

squarely in this range [Ruppert, Wand and Carroll (2003)]. However, we found that 

reduction of the rank of the β-fields below K = 50 tended to noticeably impact model 

predictions. This impact was further exacerbated by exclusion of the nugget in the β-fields. 

This finding is not a surprise, as exclusion of the nugget in the β-fields amounts to 

attributing all extra variation in the mean beyond what is explained by the GIS covariates to 

the spatial β-fields. Reduction of the rank of the smooth of these random fields results in a 

spatial smooth that is unlikely to be able to capture spatial heterogeneity.

This unfortunate finding is at odds with the goal of reducing the computational burden of 

full-rank spatio-temporal likelihood evaluations. Although the original specification 

published by Szpiro et al. did not include a nugget in the β-field, it is our feeling that such 

models are less defensible than those that include a nugget, since it is unlikely that the GIS 

covariates in the model account for all nonsmooth spatial variation.

That being said, the results herein described are based on a single data setting. Indeed, there 

almost surely exists other data sets where inclusion of a nugget in the β-fields is 

contraindicated. In these cases, use of a moderate rank smooth could lead to both a 

computational and predictive advantage.

Last, we examined a number of other approaches and specification to modeling NOx 

concentrations in the current data set and found poor performance for two off-the-shelf 

packages. Our findings confirm that the long history of methodological development of the 

model under study in the context of modeling air pollution exposures for MESA Air was 

indeed well guided and that current off-the-shelf packages are not ideal for analyzing these 

data. Future research should, however, include investigations into the extension of the 

current model using covariance tapering of either the β-fields covariance or even of the 

overall covariance matrix Σ̃.

The LA NOx data application is meant to exemplify the current methods. However, we note 

that this model is being applied more broadly to four separate pollutants in six major cities 

in the United States as part of MESA Air [Keller et al. (2014)]. Furthermore, a rigorous 

approach to model selection, that varies the number of trends, covariates and β-field models, 

is also being applied to choose the best performing predictive models. Taking into account 
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cross-validation, this effort includes the fitting of hundreds of models, representing a 

significant investment of time on the part of MESA Air investigators. To further emphasize 

the impact of the current methods, we performed a separate set of analyses replicating a 

large subset of the cross-validation scenarios for NOx data in Los Angeles considered by 

MESA Air investigators in their development of exposure models for use in primary MESA 

Air health analyses. We found that TPRS models achieved highly competitive results in 

roughly half the time, suggesting that had these methods been available during model 

development, potentially hundreds of computer hours could have been saved during the 

model development process. As we move toward incorporating the current methods into the 

highly optimized SpatioTemporal package, and further optimize the reduced-rank model 

fitting procedures, we expect that the gains in computational time will increase in orders of 

magnitude, to roughly 5 times faster. As such, we believe that the current work will continue 

to have tangible implications for MESA Air investigators and their collaborators who 

continue to use the MESA Air spatio-temporal model as the basis for exposure assessment 

in air pollution cohort studies.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Map of AQS and MESA Air monitoring locations in Los Angeles, California. “Home 

outdoor” monitors have been jittered for participant confidentiality.
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Fig. 2. 
Schematic of sampling schedule for AQS and MESA Air monitors between 1999 and 2012. 

Each point represents a two-week sampling period.
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Fig. 3. 
(Top) Two temporal basis functions estimated by modified singular value decomposition 

from Los Angeles monitoring data; (middle and bottom) raw log-transformed data and fits to 

the two temporal basis functions at sites near (LC001) and far (06037002) from the 

coastline.
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Fig. 4. 
CPU time required for a single log-likelihood evaluation of LRK and TPRS models for the 

EPA AQS and MESA Air NOx monitoring data in Los Angeles, California. Triangles 

indicate models where the rank of the spatial smooth is equal to the number of sites and 

circles indicate models where the rank of the smooth is equal to 25 in various depleted 

MESA Air data sets.
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Fig. 5. 
Map of knot locations chosen by efficient space-filling of monitoring locations (small open 

circle) and of regular grid locations (large open circles). Small black dots represent 

participant locations and crosses represent grid locations. “Home outdoor” monitors have 

been jittered for participant confidentiality.
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Fig. 6. 
Comparison of cross-validated R2 at “fixed site,” “community snapshot,” and “home 

outdoor” locations using low-rank kriging and TPRS.
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Fig. 7. 
Differences between cross-validated R2 in LRK models with knots chosen at monitoring 

locations and on a regular grid by rank. Models assume that the nugget, P, is present in all β-

fields and the range parameters are estimated by maximum likelihood.
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Fig. 8. 
(Top row) In-sample fits for full-rank models fit in spBayes. (Bottom row) In--sample fits 

for reduced-rank models (K = 50) fit in spBayes. Histograms represent the distribution of 

posterior predictions at time points/locations without observed data.
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Fig. 9. 
In-sample fits for reduced-rank models fit in mgcv with K = 50 on the two-week scale (left) 

and long-term average scale (right).
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Table 1
Summary of statistics of NOx monitoring data at EPA AQS and MESA Air 

supplementary monitoring sites

NOx ppb log(NOx ppb)

Type of site Mean SD Mean SD

AQS/fixed site

 2-wk 53.30 40.10 3.72 0.75

 LTA 45.35 17.27 3.74 0.39

Community snapshot

 2006-07-05 (summer) 34.24 11.49 3.47 0.39

 2006-10-25 (fall) 75.09 23.47 4.27 0.32

 2007-01-31 (winter) 95.29 26.99 4.51 0.30

Home outdoor 45.65 28.30 3.63 0.64
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