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Abstract

Background—In a previous study, we provided evidence that a decline in fine particulate matter 

(PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life 

expectancy in 545 counties in the United States. In this article, we investigated which chemical 

constituents of PM2.5 were the main drivers of the observed association.

Methods—We estimated associations between temporal changes in seven major components of 

PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and 

silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We 

included US counties that had adequate chemical components of PM2.5 mass data across all 

seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available 

socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban 

counties.

Results—In multiple pollutant models, we found that: (1) a reduction in sulfate was associated 

with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were 

associated with increases in life expectancy in nonurban counties only.

Conclusions—Our findings suggest that recent reductions in long-term exposure to sulfate, 

ammonium, and sodium ion between 2002 and 2007 are associated with improved public health.
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Since the mid-1990s, air quality across metropolitan areas in the United States has improved 

substantially. Much of this progress has been driven by the Clean Air Act of 1970.1 In 2009, 

Pope et al.2 compiled data on life expectancy, socioeconomic status, and demographic 

characteristics for 211 counties in the 51 US metropolitan areas with matching data on fine 

particulate air pollution (PM2.5) for the late 1970s and early 1980s and the late 1990s and 

early 2000s. Regression models were used to estimate the association between reductions in 

pollution and changes in life expectancy, with adjustment for changes in socioeconomic and 

demographic variables and in proxy indicators for the prevalence of cigarette smoking. 

These authors found that a reduction of 10 μg/m3 of PM2.5 over this period was associated 

with an increase of 0.61 ± 0.2 years in life expectancy.

Correia et al.3 extended the Pope et al.2 analysis using data for the period between 2000 and 

2007 and for 545 US counties. Using the same statistical methods as Pope et al.,2 Correia et 

al.3 investigated whether more recent and smaller reductions in PM2.5 continued to be 

associated with increases in life expectancy. They found that a reduction of 10 μg/m3 of 

PM2.5 over the period between 2000 and 2007 was associated with an increase of 0.35 ± 

0.16 years in life expectancy.

Although these previous findings provide evidence that past and more recent declines in 

ambient levels of PM2.5 are associated with an increased in life expectancy, they did not 

identify which PM2.5 components are most responsible for the observed associations. To 

address this gap in knowledge, we extended the previous study by Correia et al.3 on the 

association between county-specific changes in PM2.5 total mass (between 2000 and 2007) 

and county-specific change in life expectancy (between 2007 and 2000) to the chemical 

components of PM2.5. Specifically, we employed the same analytic methods used by Pope et 

al.2 and Correia et al.3 to estimate the association between county-specific temporal changes 

(between 2002 and 2007) of the major PM2.5 components and county-specific temporal 

changes (between 2007 and 2002) in life expectancy. We estimated these associations for all 

counties combined and separately for the urban and nonurban counties.

METHODS

Data Source

We used county-level data, which includes life expectancy, PM2.5, and potential county-

specific confounders, from our previous studies.2,3 We restricted this analysis to the 95 

counties that had at least six daily observations for each season in the years 2002 and 2007 

for PM2.5 mass and for each of its seven chemical components. These 95 counties are 

located in 75 Metropolitan Statistical Area (MSA) areas and were all included in Correia et 

al.3 Because of the small number of observed data on the chemical components in the years 

2000 and 2001, we restricted our analysis to the period between 2002 and 2007 rather than 

between 2000 and 2007 as in Correia et al.3

Outcome

Our primary outcome was the county-specific change in life expectancy, calculated as the 

difference between the values in 2007 and the values in 2002. County and yearly specific 
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life expectancies were calculated by fitting a mixed effects spatial Poisson model to the 

National Center for Health Statistics data and US Census population data. From this model, 

we obtained robust estimates of the number of deaths in each county (by age, race groups, 

and year) and then calculated life expectancies for each county. This method was also used 

in our previous analysis.3,4 Detailed explanation of the county-level life expectancy 

calculation is included in Section A in the Online Supplementary Appendix (http://

links.lww.com/EDE/A907).

PM2.5 Total Mass, Components, and Potential Confounders

PM2.5 total mass data and the chemical components of PM2.5 mass were extracted from Air 

Explorer provided by the US Environmental Protection Agency.5 We calculated the county-

level PM2.5 measurements by first averaging daily measurements across monitors within 

counties, then averaging across days to calculate yearly averages.6 The seven chemical 

components of PM2.5, including sulfate, nitrate, ammonium, elemental carbon, organic 

carbon, silicon, and sodium ion, were chosen based on the findings of Bell et al.,7 as they are 

the only components that each contributed greater than 1% of PM2.5 mass for either seasonal 

or yearly averages, and in total make up at least 79–85% of PM2.5 mass. The county-specific 

changes in PM2.5 mass and its components were defined as the differences between 2002 

and 2007 annual values. The unit of these changes is μg/m3.

For each county, we also obtained county-specific demographics, socioeconomic, 

population, and smoking information as they could be potential confounders. In particular, 

we calculated differences between 2007 and 2002 of the following county-specific variables: 

total population, proportion of population that was black, proportion of population that was 

Hispanic, proportion of population that graduated from high school, all were compiled from 

US Census and American Community Survey data, and per capita income that was compiled 

from data available through the Bureau of Economic Analysis.8 The income data was 

standardized using the Consumer Price Index with 2000 as the base year as provided by the 

US Bureau of Labor Statistics.9 To adjust for smoking, we used age-standardized lung 

cancer and chronic obstructive pulmonary disease (COPD) death rates as proxy variables for 

smoking prevalence. These death rates were calculated according to World Health 

Organization guidelines for age-standardized death rates, using 2000 and 2005 National 

Center for Health Statistics death rates.3,10 In addition, we obtained county-specific current 

smoking rates from the Center for Disease Control’s Behavioral Risk Factor Surveillance 

System (BRFSS). Among 95 counties, 87 had current smoking information based on the 

BRFSS data. Using the urbanicity index,11 we categorized 95 counties into “Urban” 

counties (n = 52) that have more than 90% of population in urban and “nonurban” counties 

(n = 43), if otherwise.3

Statistical Analysis

We fitted linear regression models to estimate the association between temporal changes in 

each of the seven chemical components of PM2.5 (between 2002 and 2007) and changes in 

life expectancy (between 2007 and 2002). In regression models, we included temporal 

changes in socioeconomic and demographic variables and in prevalence of cigarette 

smoking. We fitted these regression models to all 95 counties combined and for the urban 
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and nonurban counties, separately. Standard errors of the estimated regression coefficients 

were adjusted for the clustering of the counties within MSAs (n = 75).2 The estimated 

regression coefficients were scaled to represent the association between change in life 

expectancy and one interquartile range (IQR) change in the corresponding chemical 

component.

We fitted three regression models: (1) unadjusted single pollutant models that included only 

one dependent variable, defined as the temporal change in one of the seven chemical 

components at the time; (2) adjusted single pollutant models, same as model 1 but adjusted 

for the changes in demographics, socioeconomic, population characteristics, lung cancer 

death rates, and COPD death rates; and (3) adjusted multiple pollutant models, same as 

model 2, but adjusted for the temporal changes in all seven components. As a sensitivity 

analysis, we also fitted models that adjust for county-specific changes in current smoking 

rates in addition to the changes in lung cancer and COPD death rates. This sensitivity 

analysis was conducted for the 87 counties with BRFSS’s current smoking data available. 

All analyses were conducted using SAS version 9.3 (SAS Institute Inc, Cary, NC).

RESULTS

Study Sample

In 2007, the population from the 95 counties was approximately 70 million, 23% of total 

population in the United States. Figure S1 in the eAppendix (http://links.lww.com/EDE/

A907) shows the distributions of the county-specific averages of PM2.5 total mass, across 

counties by season, and separately for the years 2002 and 2007.

Change in Life Expectancy

Figure 1 plots county-specific values of life expectancy in 2007 (y axis) versus county-

specific values of life expectancy in 2002 (x axis). Approximately 95% of the 95 counties 

had an increase in life expectancy during this period. This increase was more pronounced in 

urban than nonurban counties.

Changes in PM2.5 Mass, Components, and Potential Confounders

Table 1 reports the summary characteristics of 95 counties, overall and by urban and 

nonurban counties. Table S1 in the eAppendix (http://links.lww.com/EDE/A907) 

summarizes the mean, median, standard deviation, and IQR across the 95 counties of the 

difference between county-specific yearly averages in 2002 minus the county-specific yearly 

averages in 2007 of PM2.5 and its components.

Figure 2 shows scatter plots of county-specific averages of PM2.5 total mass and its seven 

components in 2002 (x axis) versus 2007 (y axis). Between 2002 and 2007, we observed 

notable declines in PM2.5 total mass and its seven components, except elemental carbon, 

which on average across counties has increased. These declines varied by regions. The West 

region had the largest declines in PM2.5 total mass (1.00 μg/m3), nitrate (0.50 μg/m3), 

ammonium (0.22 μg/m3), organic carbon (1.61 μg/m3), and sodium ion (0.14 μg/m3), the 

Midwest region had the largest decline in sulfate (0.32 μg/m3), and the Northeast region had 
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the largest decline in silicon (0.03 μg/m3) and the smallest increase in elemental carbon 

(0.13 μg/m3). In anticipation of multiple pollutant analysis, Table 2 summarizes correlations 

between the changes (between 2002 and 2007) for each pair of chemical components across 

all 95 counties. Changes in ammonium and nitrate are the most highly correlated (R = 0.81).

Association Between Changes in PM2.5 Components and Changes in Life Expectancy

Figure S2 in the eAppendix (http://links.lww.com/EDE/A907) shows scatter plots of county-

specific changes in PM2.5 mass and its seven chemical components (between 2002 and 

2007, x axis) versus county-specific changes in life expectancy (between 2007 and 2002, y 

axis). Figure 3A–C shows the point estimates and 95% confidence intervals (CIs) of the 

association between temporal changes in life expectancy and temporal changes in each of 

the seven components of PM2.5 and PM2.5 total mass across all counties combined and by 

urban and nonurban counties. These estimates were based on the unadjusted single pollutant 

model (Figure 3A), adjusted single pollutant (Figure 3B), and adjusted multiple pollutant 

models (Figure 3C). Regression models for Figure 3B, C included changes in per capita 

income, total population, proportion of population that was black, proportion of population 

that was Hispanic, proportion of population that graduated from high school, age-

standardized death rates for lung cancer, and age-standardized death rates for COPD. 

Estimates and corresponding 95% CIs of all the regression coefficients from regression 

models are listed in Tables S2–S4 in the eAppendix (http://links.lww.com/EDE/A907). 

Figure S3A–C in the eAppendix (http://links.lww.com/EDE/A907) summarizes the results 

of the sensitivity analysis for the unadjusted single, adjusted single, and multiple pollutant 

models that adjusted for the change in current smoking rates obtained from BRFSS. Only 87 

counties that had current smoking information from BRFSS were included in the sensitivity 

analysis.

PM2.5 Mass

Under the single adjusted pollutant model (Figure 3B), we did not find evidence that a 

decrease of an IQR (2.20 μg/m3) of PM2.5 mass was associated with an increase in life 

expectancy.

Sulfate

Under a single adjusted pollutant model (Figure 3B), we found that a decrease of an IQR 

(0.32 μg/m3) of sulfate was weakly associated with an increase in life expectancy. This 

association became stronger under a multiple adjusted pollutant model (0.12 years [0.02 to 

0.22]; Figure 3C). This association is stronger in nonurban counties compared with urban 

counties.

Ammonium

Under a multiple pollutant model, we found that a decrease of an IQR of ammonium was 

associated with an increase in life expectancy in the 43 nonurban counties (0.14 years [95% 

CI = 0.01, 0.27]; Figure 3C).
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Sodium Ion

Under a multiple adjusted pollutant model (Figure 3C), we found that a decrease of an IQR 

(0.04 μg/m3) of sodium ion was associated with an increase in life expectancy in the 43 

nonurban counties (0.10 years [95% CI = 0.06, 0.14]).

We did not find evidence of an association between temporal changes in the chemical 

components and temporal changes in life expectancy for any of these chemical components: 

elemental carbon, nitrate, organic carbon, or silicon.

The sensitivity analysis shows that all these results, except ammonium, were robust to the 

adjustment for the temporal change in current smoking rates between 2002 and 2007 (Figure 

S3A–C in the eAppendix; http://links.lww.com/EDE/A907). Specifically, we found that the 

association between a reduction in ammonium and an increase in life expectancy for 

nonurban counties was lost when adjusted for smoking rates. However, this might be due to 

the smaller number of nonurban counties included in the sensitivity analysis (n = 35) 

compared with the already small number of nonurban counties included in the main analysis 

(n = 43). We also found that the change in current smoking rates was not associated with the 

change in life expectancy under either a single adjusted pollutant model or a multiple 

adjusted pollutant model.

DISCUSSION

This study estimates long-term effects of PM2.5 chemical components on life expectancy in 

both urban and nonurban counties. We found that a decrease in sulfate was associated with 

increases in life expectancy in all 95 counties and decreases in ammonium and sodium ion 

were associated with increases in life expectancy in the nonurban counties. Our findings 

were based on a multiple pollutant model in which each individual pollutant also was 

adjusted for the other six constituents.

The identification of which chemical components of particulate air pollution are primarily 

responsible for various observed adverse health effects are complicated and clearly not fully 

resolved. Overall the literature seems to suggest that various complex mixtures of fine 

particles including metals, elemental and organic carbon, ammonium, sulfate, nitrate, and 

related pollutants can contribute to adverse health effects.7,12–24

Our result on the adverse effects of sulfate on life expectancy is consistent with the results 

by Lepeule et al.,25 Pope et al.,26 and Kravchenko et al.27 These authors also found that a 

decrease in sulfate leads to a decrease in mortality.

Restricted by available chemical components of PM2.5 data, we did not find that decreases 

in elemental carbon, nitrate, silicon, and organic carbon were associated with an increase in 

life expectancy. However, recent time series studies have reported that these components 

might be associated with mortality. For example, in a recent study of acute health effects 

associated with short-term exposure to chemical components of PM2.5, Krall et al.22 fitted 

single pollutant models to multiple site time series data and estimated short-term 

associations between nonaccidental mortality and PM2.5 components across 72 urban 
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counties from 2000 to 2005. They found that daily changes in silicon, organic carbon, and 

elemental carbon were associated with daily change in mortality. Dai et al.28 fitted a city-

season-specific Poisson regression model to estimate PM2.5 effects on approximately 4.5 

million deaths for all-cause, cardiovascular diseases, respiratory diseases, myocardial 

infarction, and stroke in 75 US cities from 2000 to 2006. They found that silicon, calcium, 

and sulfur were associated with all-cause mortality and sulfur was also related to more 

respiratory deaths. Our analysis focused on long-term exposure to chemical components and 

mortality, whereas all the time series analyses focused on short-term exposure.

Epidemiologic studies of multiple pollutants could report findings that are unexpected and 

hard to interpret because of the many methodological challenges.29 These challenges are: (1) 

the correlation among pollutants could hamper the possibility of isolating the effect of one 

pollutant from the others; (2) unmeasured confounding and/or the misspecification of the 

statistical model could bias the results; (3) exposure measurement error, also considering 

that the different components have different degree of spatial variability.30,31

Our study has limitations. First, we only had data on 95 counties and 75 MSAs, a much 

smaller number than the 545 counties included in Correia et al.3 This is mainly due to the 

fact that the number of monitors that measure the components of PM2.5 is much smaller than 

the number of monitors that measure PM2.5 total mass. In 2007, among 259 monitors that 

measure PM2.5 mass across 95 counties, only 107 (41.3%) were available for one or more of 

the seven components of PM2.5 mass.

Second, although our statistical models included many potential confounders such as 

temporal differences in socioeconomic, demographic, and smoking variables, we recognize 

that it is plausible that temporal changes in lifestyles over the past decade could have been 

affecting life expectancy. These changes, including the decrease in the size of the smoking 

population,32 the decline in the consumption of red meat,33 and the improvement in diabetic 

control,34 could all contribute to increase in life expectancy. Moreover, the improvements in 

treatments, quality of care, access to care, decline in hospitalizations in acute cardiovascular 

disease nationwide can also result to increase in life expectancy.35–38 However, all these 

factors are likely to confound the reported associations only if: (1) their temporal changes 

within each county are also correlated with the temporal changes in the PM2.5 components 

within the same county, and (2) their county-specific temporal changes are not captured by 

the county-specific measured confounders that were included in the statistical model.

Third, in this analysis, we regressed temporal differences in exposure to air pollution versus 

temporal differences in life expectancy across counties, and therefore county-specific factors 

that are correlated with both exposure to air pollution and life expectancy but that do not 

vary temporally are not confounders.

Another potential limitation is that exposure measurement error for the chemical 

components could be larger in nonurban counties than urban counties. This could be due to 

two reasons. First, nonurban counties usually are larger than urban counties, and yet the 

number of monitors in non-urban counties is smaller than the number of monitors in urban 

counties. In our study, the numbers of monitors for PM2.5 mass were 79 and 180 in 
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nonurban and urban counties, respectively. Second, the between-monitor correlation among 

chemical components is likely to decrease as the distance between monitors increases and 

these correlations are different across the chemical components. Bell et al.30 studied the 

correlations of daily pollutant’s data for monitor pairs for each of the seven chemical 

components and found that correlations decline with increasing distance between two 

monitors. Correlations of ammonium, nitrate, and sulfate seem less sensitive to the change 

in distance than the correlation of elemental carbon.30

Finally, we only focused on seven components that contribute more than 1% to the overall 

PM2.5 total mass.7 Our analysis did not include components that constitute less than 1% of 

PM2.5 total mass but that are harmful.

Despite these limitations, our findings provide evidence that county-specific reductions in 

long-term exposure to sulfate emissions, which are usually generated from automobile 

traffic, power generation, industry and agriculture, were associated with an increase in life 

expectancy. Also we found that county-specific reductions in ammonium emissions, which 

are more common in nonurban areas and usually generated by the use of fertilizers and 

waste disposal sites, and county-specific reductions in sodium ion emissions, which are 

usually generated from industry and agriculture (e.g., treatment of biological wastewater), 

were associated with an increase in life expectancy in the non-urban counties. Identifying 

these drivers could potentially allow for more targeted air quality regulation and further 

inform understanding of the mechanisms by which fine-particulate air pollution affects 

public health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Changes in life expectancy in 95 US counties (2007 vs. 2002).
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FIGURE 2. 
County-specific yearly average of PM2.5 total mass and its seven components in 2002 versus 

2007.

Dominici et al. Page 13

Epidemiology. Author manuscript; available in PMC 2016 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
A, Point estimates and 95% confidence intervals of the association across counties between 

a decrease (between 2002 and 2007) in an IQR (μg/m3) of the PM2.5 total mass or in each of 

the seven chemical components and an increase (between 2007 and 2002) in life expectancy 

(years). Results are reported for all the 95 counties (left panel), 43 nonurban counties 

(middle panel), and 52 urban counties (right panel). These estimates were obtained under an 

“unadjusted single pollutant model” that includes a single exposure predictor of the change 

in PM2.5 total mass or the change in one of the seven components. B, Point estimates and 

95% confidence intervals of the association across counties between a decrease (between 

2002 and 2007) in an IQR μg/m3) of the PM2.5 total mass or in each of the seven chemical 

components and an increase (between 2007 and 2002) in life expectancy (years). Results are 

reported for all the 95 counties (left panel), 43 nonurban counties (middle panel), and 52 
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urban counties (right panel). These estimates were obtained under an “adjusted single 

pollutant model” that includes a single exposure predictor (change in PM2.5 total mass or the 

change in one of the seven components) and the additional confounders that represent 

changes in demographics, socioeconomic, population, lung cancer, and COPD variables 

(surrogate information on smoking population). C, Point estimates and 95% confidence 

intervals of the association across counties between a decrease (between 2002 and 2007) in 

an IQR μg/m3) of the PM2.5 total mass or in each of the seven chemical components and an 

increase (between 2007 and 2002) in life expectancy (years). Results are reported for all the 

95 counties (left panel), 43 nonurban counties (middle panel), and 52 urban counties (right 

panel). These estimates were obtained under an “adjusted multiple pollutant model” that 

includes changes in all the seven components as exposure predictors and the additional 

confounders that represent changes in demographics, socioeconomic, population, lung 

cancer, and COPD variables (surrogate information on smoking population).
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