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Abstract

Background—Local trends in ozone concentration may differ by meteorological conditions. 

Furthermore, the trends occurring at the extremes of the Ozone distribution are often not reported 

even though these may be very different than the trend observed at the mean or median and they 

may be more relevant to health outcomes.

Aims—Classify days of observation over a 16 year period into broad categories that capture 

salient daily local weather characteristics. Determine the rate of change in mean and median O3 

concentrations within these different categories to assess how concentration trends are impacted 

by daily weather. Further examine if trends vary for observations in the extremes of the O3 

distribution.

Methods—We used k-means clustering to categorize days of observation based on the maximum 

daily temperature, standard deviation of daily temperature, mean daily ground level wind speed, 

mean daily water vapor pressure and mean daily sea-level barometric pressure. The five cluster 

solution was determined to be the appropriate one based on cluster diagnostics and cluster 

interpretability. Trends in cluster frequency and pollution trends within clusters were modeled 

using Poisson regression with penalized splines as well as quantile regression.

Results—There were five characteristic groupings identified. The frequency of days with large 

standard deviations in hourly temperature decreased over the observation period, whereas the 

frequency of warmer days with smaller deviations in temperature increased. O3 trends were 

significantly different within the different weather groupings. Furthermore, the rate of O3 change 

for the 95th percentile and 5th percentile was significantly different than the rate of change of the 

median for several of the weather categories.

Conclusions—We found that O3 trends vary between different characteristic local weather 

patterns. O3 trends were significantly different between the different weather groupings suggesting 

an important interaction between changes in prevailing weather conditions and O3 concentration.

1. INTRODUCTION

Regulations and technological improvements implemented over the past decades have 

caused marked improvement in air quality over many areas in the United States. In 

particular, pollutant trends over the Northeastern United States have been shown to be 

HHS Public Access
Author manuscript
J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2016 February 03.

Published in final edited form as:
J Expo Sci Environ Epidemiol. 2015 ; 25(5): 532–542. doi:10.1038/jes.2014.45.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decreasing for many important pollutants including PM2.5, NO2, SO2 and CO (1–3). Trends 

for median O3 concentrations have a more mixed result, with some studies suggesting 

decreases while others suggest no significant trends (4–7). There is also evidence that 

background O3 concentrations have been increasing, perhaps due to an increase in 

conditions that are favorable to O3 formation such as higher temperature and shifts in the 

NOx/VOC ratio (5,8,9). A good understanding of the factors driving long-term changes in 

O3 concentration is crucial in order to better inform policy decisions.

The strong seasonal patterns in ambient O3 concentrations have been well described 

worldwide as well as in the North Eastern United States (10,11). The seasonality in O3 

concentrations is related both to the effects of meteorological conditions on rates of O3 

formation as well as to changes in the availability of precursors. The meteorological factors 

relating to O3 formation are intensity of solar radiation, cloud cover, temperature, water 

vapor pressure and boundary layer height. Changes in prevailing wind directions exhibit 

seasonal dependence and also determine the sources and concentrations of transported O3 

precursors (12).

Local spring-time ozone maxima have been observed at many remote locations, thought to 

be less impacted by anthropogenic emissions (13,14). Two-main processes are thought to 

contribute to these spring time maxima. These are Stratosphere-troposphere exchange (STE) 

of O3 rich stratospheric air into the troposphere as well as increases in solar-radiation acting 

on O3 precursors that have accumulated over the winter period (15). Profound STE events 

resulting in significant O3 intrusion into the troposphere are generally associated with 

extreme weather events, such as thunderstorms which can be identified through local 

weather variables such as local wind speed, water vapor pressure, barometric pressure and 

fluctuations in ground-level temperatures (16). Stagnation, which generally occurs in the 

North-Eastern United States in the height of summer, is characterized by low wind speed 

and high ambient temperature, leads to extremely favorable conditions for O3 formation 

(17).

Concentrations of anthropogenic O3 precursors show a strong seasonal dependence as well. 

The decomposition rate of peroxyacetylinitrate (PAN), an important sink for both NOx and 

radicals, is highly dependent on ambient temperature (18). Isoprene emissions from plants, a 

major VOC precursor to O3, have also been shown to be highly temperature dependent (19). 

Lastly, NOx concentrations are generally higher in winter because the reduced oxidative 

capacity of the atmosphere results in longer residence time. Since these important precursors 

are strongly influenced by temperature, this is yet another important facet of the complex 

relationship between temperature and O3 formation.

Larger time-scale changes in weather may also have an impact on O3 concentrations. Over 

the past 3 decades, clear trends in weather conditions, including extreme temperature events, 

total precipitation and humidity have been observed (20,21). Furthermore, changes in 

synoptic weather patterns, such as changes in the strength of the North Atlantic Oscillation, 

El Niño–Southern Oscillation, as well as changes in the frequency of the Mid-Latitude 

Cyclone may contribute to altering concentrations of transported air pollutants over New 

England (22,23).
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Considering weather conditions when performing trend analysis for O3 is therefore crucial. 

Commonly, temperature and wind speed are accounted for as a main effect in the regression 

model used to calculate trend (24). Including a wider range of meteorological variables in a 

regression model can be problematic due to issues of correlation between weather variables. 

Different approaches have been used to resolve this problem including smoothing over a 

larger spatial area (25), neural network models (26), cluster analysis and classification tree 

approaches (27,28) and probabilistic models (29).

In order to better understand how trends in air pollution are impacted by short- and long-

term scale changes in climate we propose to classify days of observation in a 16 year period 

based on the multivariate relationship between local weather variables. Within each of these 

identified groups, we will perform a trend analysis of O3 over the time period. This approach 

allows us to identify how the O3 concentrations are changing independently of long-term 

changes in local weather patterns. Differences in trends within each weather pattern group 

will also be examined for quantiles of the O3 distribution. Observed differences in trend can 

then be ascribed to changes that are independent of weather patterns such as changes in 

emissions of VOC and NOx precursors to O3 formation.

2. METHODS

The different steps undertaken in this methods section are summarized in Figure 1.

2.1 Data

The weather data used in this study included hourly measurements recorded at the Boston 

Logan airport as provided by the National Oceanic and Atmospheric Administration 

(NOAA) database. The data used were collected during 1995–2010 and 24-hour averages 

were estimated for days with at least 75% completeness in the hourly data. From 1995–

2010, O3 data measured at 4 sites within the metropolitan Boston, MA, area were obtained 

from the US EPA’s aerometric information retrieval system. We computed city wide 

averages to better capture regional distribution. Although the focus of this paper is the ozone 

trends, concentrations of NO2, NOx, SO2 and BC were also retrieved from US EPA’s 

aerometric information retrieval system to aid interpretation of the results. Trend analysis for 

these pollutants was performed, in order to compare with the O3 results.

The weather variables used in the cluster analysis included maximum daily temperature, 

standard deviation of daily temperature, mean daily ground level wind speed, mean daily 

water vapor pressure (absolute water content of the air), and mean daily sea-level pressure. 

These weather variables are used to characterize different physical properties thus their 

distributions and units are different. For this reason their values were converted to z-scores 

which were used for clustering. There were 87 days excluded from the analysis due to more 

than 25% missing hourly data.

2.2 Clustering

Clusters were identified using k-means cluster analysis, Hartigan-Wong algorithm (30). We 

allowed for values of k (number of clusters) to range between 2 and 10. To ensure that the 

solution selected is stable and not a local minimum, the k-means algorithm was run 1,000 
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times with 1,000 different random initial seeds. The solution with the lowest sum of squares 

within (SSW) was retained as the best solution for the given conditions. The large number of 

initial seed values helped to ensure that the solution did not correspond to a local minimum 

(31). For all values of k, the algorithm converged within 300 iterations.

The number of clusters (k) was selected using three main criteria. The first was the desire to 

pick a solution that yielded a reasonable total SSW value (keeping in mind that SSW 

decreases as the number of clusters decreases). The second was a desire to minimize 

pollutant concentration variability within the clusters of a given solution and the third was to 

identify clusters that were interpretable based on our knowledge of weather patterns in the 

Boston area.

The k-means algorithm used was implemented in the kmeans function of the stats package 

in R v. 2.15.2.

2.3 Comparing Clustering Solutions

The Rand Index is a measure of similarity between two different partitions of the same data 

set. This indexranges between 0 and 1 where 0 indicates that two data clusters do not agree 

on any pair of points and 1 indicating that the data clusters are exactly the same. The Rand 

Index represents a weight of the sites classified together in the two solutions versus the sites 

classified separately. In this paper, we used the adjusted Rand Index in order to compare 

different clustering solutions. First proposed by (32) the adjusted Rand Index corrects the 

Rand Index for the random chance that pairs are classified together. Steinley et al. (2004) 

suggested that an adjusted Rand Index greater than 0.9 reflected excellent agreement, values 

greater than 0.8 reflected good agreement, values greater than 0.65 indicated moderate 

agreement and less than 0.65 indicated poor agreement (33).

2.4 Back-Trajectory Analysis

Back-trajectory paths were calculated using the HYSPLIT model (v. 4.9) developed by 

National Oceanic and Atmospheric Administration (NOAA). The meteorological archive 

used was the Eta Data Assimilation System with 40 km resolution (EDAS40). For every 

hour of every day from 2004 to 2009, an 84 hour back-trajectory was computed in 

HYSPLIT from the starting coordinates of the sampling site and a vertical height of 750 m. 

The vertical movement of air parcels within the system was modeled using an isentropic 

assumption (34–36). Unfortunately, because the EDAS40 data begins in 2004, it was not 

possible to obtain earlier back-trajectory information in the same projection space.

The back-trajectory information begins in 2004 as this was the first year available at this 

higher grid resolution. We use these data as a representative sample of our data set which 

ranges from 1995–2010. This approach is also supported by the sensitivity analysis which 

shows no great changes in the clustering results over the early and later parts of the study 

period as discussed below.
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2.5 Trend analysis

Trend analysis of yearly cluster frequency was performed using both a generalized additive 

Poisson model with a penalized spline term representing the year, in order to allow for non-

linear trends. The penalized spline was calculated using the MGCV package in R v. 2.15.2.

O3 trends were described using a linear regression model, controlling for seasonality using 

sine and cosine functions and day of week as an indicator variable. In addition, a quantile 

regression model was used to model differences in trends for different quantiles of O3 

concentrations over time. This model also controlled for seasonality with sine and cosine 

functions as well as day of week using an indicator variable. Quantile regression was first 

proposed by Koenker (1978) as a robust alternative to traditionally used mean estimator 

(37). In addition, quantile regression allows us to estimate the trend for different quantiles in 

the data, allowing us to observe changes in the extremes of the dataset, e.g., trends in 

baseline pollution and regional smog episodes. Quantile regression was performed using the 

quantreg package in R v. 2.15.2.

3. RESULTS

3.1 Selecting k

We selected the number of clusters (k) to be 5. Figure 2 (a) shows the fractional change in 

SSW for increases in k from 2 to 10. As k increases the value of the SSW decreases; 

however, the decrease slows significantly after k=5. In part this justifies selecting 5 as the 

number of clusters.

We also considered the 4 and 6 cluster solution. However, the 5 cluster solution proved to be 

more interpretable based on general knowledge of weather patterns throughout the Boston 

year. The 5 cluster solution showed a clear seasonal pattern which was a goal when we were 

seeking to partition this data.

3.2 Cluster Descriptions

The clusters were sorted based on the number of days per cluster, from largest to smallest. 

Important meteorological and chemical characteristics of each cluster are presented in Table 

1. The monthly distribution of each cluster is presented in Figure 3 (a). Interpretation of the 

clusters is based on their mean characteristics.

Clusters 1 and 3 occur primarily in the winter months. Cluster 1 is characterized by high sea-

level pressure and low boundary layer height, whereas cluster 3 is characterized by lower 

sea-level pressure, higher precipitation and higher boundary layer. Cluster 1 is higher in NO 

and BC whereas cluster 3 is higher in O3. The higher concentration of primary pollutants in 

cluster 1 may be reflective of decreased mixing on those days due to a lower boundary 

height.

Clusters 2 and 4 are primarily in warm weather clusters. Cluster 4 occurred in June, July and 

August whereas cluster 2 was more spread out in time from May until October. The mean 

daily temperature of cluster 4 is 23 °C, as compared to 16 °C for cluster 2, and the water 

vapor pressure is significantly higher in cluster 4. The meteorological conditions occurring 
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in Cluster 4 are consistent with summer time regional pollution events due to photochemical 

transformation of pollutants. This is confirmed by the elevated PM2.5 and O3 concentrations 

as well as very high maximum 8-hr O3 and the low NO concentrations in cluster 4.

Cluster 5 occurs in the transition months (spring and fall) and is characterized by moderate 

temperatures (13 °C) and moderate O3 and PM2.5. In addition, the standard deviation of the 

hourly temperature values is highest in Cluster 5 than other clusters suggesting strong 

diurnal temperature differences.

In order to determine the persistence of different clusters, we calculated the number of 

consecutive days belonging to the same cluster (cluster runs). Figure 3 (b) shows that the 

median number of consecutive days ranges between 1 and 2. There are infrequent episodes 

that occur where consecutive days can be as high as 16. Cluster 5 seems to have the fewest 

such consecutive days.

3.3 Wind Directions

Ground-level hourly wind direction measurements were available for every day of 

observation. We compared the percent of hours within 8 direction quadrants for each cluster. 

Figure 4 shows the results of this analysis. In cluster 1, 45% of the ground level wind 

directions were from the N-W quadrant. For cluster 2, 22% of the hourly wind directions 

were from the NE-E direction. Cluster 3 had 55% of the ground wind coming from the SW-

NW direction. Cluster 4 had 60% of the wind coming from the S-W direction and cluster 5 

had ground level wind directions ranging from S to NW. Because ground level wind 

direction does not necessarily indicate the direction of the prevailing winds, and potentially 

the origin of transported pollutants, we also wanted to plot hourly back-trajectories for the 

days in our observation period.

Figure 5 shows the distance and location from Boston of all the hourly back-trajectories that 

were less than 1,500 meters above ground level in the 72 hours prior to arriving in Boston. 

The visualization was done with the heR.misc package (38). This figure further 

demonstrates the differences between clusters that were observed in the same season. The 

winter clusters have very different profiles with cluster 3 (associated with high boundary 

layer height) showing a significant contribution of air masses from the NW. The summer 

clusters also have very different profiles with Cluster 4 (regional pollution) showing a strong 

contribution from air masses to the West of Boston that is not seen in Cluster 2. The 

transition season cluster has similar patterns of back-trajectories as Cluster 4 (regional 

pollution).

3.4 Sensitivity Analysis

For the cluster analysis, we wanted to determine the sensitivity of the solution to the initial 

conditions. Firstly, we determined how sensitive the solution was to the number of clusters 

selected. As shown in Figure (b), the 4 and 6 cluster solution moderately agrees with the 5 

cluster solution, whereas for other k values, the cluster solution is significantly different and 

less interpretable.
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We also confirmed that clustering the data from the beginning of the observation period and 

the end of the observation period would not produce significantly different results. For this 

analysis, the dataset was separated into two parts, one with dates prior to 1/1/2003 and the 

second with dates starting at 1/1/2003. The two datasets were clustered into 5 clusters as 

described above. These two solutions were compared to the initial clustering that was 

obtained using the entire dataset. Comparing the early and late datasets to the solution 

obtained from all the years combined shows excellent comparability (adjusted Rand index of 

0.95 and 0.88, respectively). Therefore, we conclude that it is appropriate to cluster and 

interpret the data over the entire observation period.

We examined how sensitive the solution was to missing days of observation in the data set. 

We randomly removed 10% of the days (576 days) to create 100 new datasets. We then 

clustered these 100 datasets and compared the results to our solution using the adjusted 

Rand index. The mean adjusted Rand index across all the datasets is 0.97 (sd=0.06).

3.5 Trend in yearly weather patterns

A trend analysis of the yearly frequency of each cluster as a function of the year of 

observation was performed. The use of a penalized spline to model the trend allows for non-

linear relationships. The results are presented in Figure 6. There are no clear trends for 

clusters 1, 3 and 4. However, there is strong evidence that there is a linear decrease in the 

frequency of cluster 5 (1.3% per year) which corresponds to transition days and a linear 

increase in the frequency of cluster 2 (1 % per year) which corresponds to mild summer 

days.

3.6 Pollutant Trends

First, we examined the overall trend in concentrations of O3, NO2, SO2, BC and PM2.5 over 

the entire observation period without accounting for cluster groupings (Figure 7) using both 

linear regression and quantile regression. We further examined the differences in the trends 

for O3 by cluster. The results for O3 are presented in Figure 8. The trend values and standard 

errors are presented in Table 2. There are important differences in the trends both across 

clusters as well as across quantiles for the same cluster. Across all the clusters, the 

background concentrations of O3 are increasing over time, although the magnitude of this 

difference is much smaller for Cluster 4 than the other clusters. The trends in the 95th 

percentile values of O3 are quite different over the different clusters. Cluster 4 has the 

strongest decline in the 95th percentile value of O3 (−0.69 ppb/year) whereas Cluster 5 has 

the strongest increase in the 95th percentile value of O3 (0.42 ppb/year). The differences in 

trend by cluster were also examined for the other pollutants, but there were no significant 

trend differences by cluster, results are not presented here.

In order to better understand the relative impact of changes in weather frequency vs changes 

in concentration within weather cluster, we calculated the change in O3 concentration 

attributable to each process, over the 16 years of observation, as shown in Equation 1.
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Equation 1

Where

d[O3] is the change in O3 over 16 years

dDi is the change in the number of days in cluster i over 16 years

 is the median concentration of O3 within cluster i

d[O3]i is the change in concentration of O3 within cluster i over the 16 year period

 is the average number of days (per year) belonging to cluster i

Results of this analysis are presented in Table 3. In general, the change in yearly 

concentration attributable to change in concentration within cluster is much higher than 

changes in concentration attributable to changes in yearly frequency. In addition, we can see 

that the change in trend for the baseline is much higher than for the median. The 95th 

percentile concentration of O3 is decreasing overall, but this is mainly due to important 

decreases in the 95th concentration trend of Cluster 4. We also observe that clusters 1 and 2 

are both strongly contributing to the overall increasing trend in O3 concentration throughout 

the year. This analysis is instructive in contrasting how changes in weather and changes in 

rates of formation of O3 are driving the overall differences being observed.

We determined that including categorical values for month instead of describing seasonality 

as a periodic function did not significantly affect the trend estimates. We also examined 

whether the assumption of linearity in the trends of O3 was reasonable by also modeling the 

trends using basis splines. There was no evidence of strong deviation from linearity.

4. DISCUSSION

The weather clusters identified represent 5 main daily weather types that occur in the Boston 

area. These categories are based on the maximum daily temperature, standard deviation of 

the daily temperature, ground level wind speed, water vapor pressure, and the sea level 

pressure. Examining the trends in O3 concentration within each of these characteristic 

meteorological groupings allows for a better understanding of the trend of O3 over time, 

independent of trends in climate and changes in the duration and start of seasonal conditions. 

Furthermore, our results demonstrate that modeling mean O3 values does not provide 

adequate information on O3 trends at the extremes. This has been previously demonstrated 

in other instances (39). The overall trend in baseline O3 (0.27 ± 0.07 ppb/year) as 

determined by the quantile regression of the 5th percentile in O3 concentration over the time-

period agrees with those of other studies reporting trends in O3 baseline over the West Coast 

of Ireland, (0.31 ± 0.12 ppb/year) (40) and off the West Coast of the USA, 0.5–0.8 ppb/year 

(9).

We know that weather strongly influences O3 formation and removal. Examining the trend 

in O3 concentrations within the 5 identified clusters allows for the investigation of the 
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relationship changes in O3 concentrations independent of changes in weather patterns. Over 

the 16 year time-period, the sensitivity analysis confirmed that the cluster types did not 

change significantly rather there has been a clear change in the yearly frequency of the 

clusters over time. There was a decrease in the frequency of cluster 5 (1.3% per year) and an 

increase in the frequency of cluster 2 (1 % per year). Cluster 2 corresponds to warmer days 

in the summer with higher nighttime temperatures, while cluster 5 corresponds to days in the 

transition seasons with lower nighttime temperatures and mild daytime temperatures. 

Therefore, we have observed a decrease in transition season days and an increase of days 

with summer characteristics in the spring and fall seasons. Furthermore, cluster 2 

corresponds to days with Easterly winds. Although 16 years of data is a short time to make 

any inference about long-term changes in temperature trends, this observation does coincide 

with climate change studies that note a decrease in the daily standard deviation of 

temperature being recorded during the winter and transition seasons in the northeast (41,42).

Classifying based on daily weather allows for important trends to be observed. In particular, 

baseline concentrations on stagnant summer days remain unchanged. By contrast, baseline 

concentration in mild summer conditions are increasing more rapidly than dataset as a whole 

(0.38 ± 0.14 ppb/year). Winter clusters also show strong increases in baseline O3 

concentrations. The high boundary layer winter days (Cluster 3) show slight decreases 

(−0.15 ± 0.14 ppb/year) in upper quantiles of O3. These days are characterized by low 

pressure, air masses from the NW and high precipitations. The decrease in maximum O3 

concentrations is possibly due to increases in winter precipitation over the NE that have 

been observed in climate change studies (43). Winter days with low boundary layer height 

show an increase of 0.23 ± 0.13 ppb/year in the 95th percentile. These days are associated 

with low precipitation and higher concentrations of primary pollutants, including NO. The 

increase in the 95th percentile concentrations of O3 may indicate that over time on these 

days, O3 formation is increasingly limited by NOx concentrations. Ozone concentration on 

transition season days have increases in the 95th percentile at a rate of 0.42 ± 0.26 ppb/year. 

This agrees with observations of recent increases in spring maxima O3 concentrations (13). 

Significant decrease in O3 in the upper quantiles of Cluster 4 (−0.70 ± 0.55 ppb/year) agrees 

with previous evidence that effective emission controls have decreased summertime smog 

episodes over NE North America (3).

Comparing this clustering method to examining O3 trends by season demonstrates the added 

value in categorizing days based on observed weather patterns rather than by fixed seasonal 

time periods. Figure 9 shows the results of the trend analysis of O3 by season. The increase 

in transition season maxima is not at all visible with this analysis method. Furthermore, 

differences between low and high pressure days are also not evident. The decrease in higher 

quantile values in the stagnant summer conditions is captured however, perhaps because 

these days tend to be highly concentrated within the summer months. The magnitude of the 

decrease in trend is decreased as compared to the clustering method. We also performed a 

second analysis which additionally controlled for daily temperature as well as season and 

observed no significant differences between this model and the model that only accounted 

for season.
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The results of the trends in frequency and the trends in O3 concentration within cluster were 

combined in order to assess their respective contributions on total O3 concentration (Table 

3). The overall change in O3 concentration is strongly driven by changes occurring within 

clusters 1 and 2. Both these clusters have markedly low mixing heights as compared to the 

other clusters. In addition, they both have significantly higher concentrations of NO. The 

increase in O3 observed here appears to be associated with photochemistry of locally emitted 

pollutants as opposed to regional transported pollutants.

In addition, the results of Table 3 suggest that there is an overall increase in the 95th 

percentile of O3 in the transition weather group. This trend is particularly concerning given 

recent analyses suggest increased susceptibility to air pollution in the spring time. Within 10 

Canadian cities, springtime weather was associated with a stronger response to O3 among 

the elderly. In addition, they observed higher RR estimates in the springtime (44). Likewise, 

stronger associations between air pollution and mortality and morbidity have been observed 

in the springtime (45,46).

For comparison we estimated the trends of other pollutants. The trends of NOx, SO2, BC and 

PM2.5 in this time period are shown in. For these four pollutants, the quantile regression 

results indicate a stronger decrease for the higher percentile values than for the low level 

values, indicating that background concentrations are not changing as quickly as the higher 

concentrations. This suggests that emission controls are having a positive impact on high 

ground level concentrations. Although not shown here, there is no observable difference in 

the trends of these pollutants by cluster, suggesting that the trends in these pollutants are not 

weather dependent.

Because the NOx/VOC ratio is an important factor in the rate of formation of O3 we wanted 

to investigate whether the differences observed for the different weather clusters are related 

weather dependent trends in this ratio. When accounting for daily NOx concentration in the 

trend analysis, the trends for clusters 1, 2, 3 and 5 become insignificant or marginally 

positive. On the other hand, the trends of O3 within cluster 4 remain consistent with those 

observed when not accounting for NOx. This suggests that other than in stagnant summer 

conditions, cluster specific changes in O3 were associated with similar decreases in NOx. 

This is due to the reaction of ozone with NO. This mechanism is more important during the 

winter and the night when the atmosphere is more stable and the local primary emissions 

containing NO have more impact on the transported ozone. However, this mechanism 

becomes less important during the summer episodes when ozone formation is enhanced and 

there is more vertical mixing.

5. Conclusions

The method presented here groups days of observation into meaningful and interpretable 

groupings that reflect characteristic weather patterns. These groupings can then be used to 

examine changes in O3 concentrations over time. Seasonal analysis has been successfully 

used to identify differences in pollutant trends as well as differences in response to air 

pollution. However, this method allows for greater precision in identifying the exact 

calendar days that represent a cohesive weather grouping. The use of quantile regression 
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allows for the identification of important trends that are occurring at the extremes of the 

distribution and that may be missed in a mean regression. These changes that are occurring 

at the extremes can be extremely important and yield information that is relevant to policy 

and decision making. The analysis demonstrates the effectiveness of emission control 

policies to diminish maximum summertime O3 concentrations. However, it also 

demonstrates that baseline O3 concentrations are significantly increasing, particularly in 

winter and moderate summer conditions. Furthermore, there is evidence that there is the 

need for increased O3 controls in the transition months in order to curb the rising trend in 

maximum values.
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Figure 1. 
Methods summary chart
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Figure 2. 
Selecting the number of clusters (k)
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Figure 3. 
Distribution of clusters
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Figure 4. 
Percent of observed hours within each direction bin by cluster
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Figure 5. 
Back-trajectory analysis 0–72 hours prior to sampling day and 0m–1000m from ground 

level.
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Figure 6. 
Trend in cluster frequency over time
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Figure 7. 
Quantile regression and linear regression of O3, NO2, SO2, BC and PM2.5 by year
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Figure 8. 
Trend analysis of Ozone by Cluster
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Figure 9. 
Trends in O3 by Season
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