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Abstract

Background—Because ambient air pollution exposure occurs as mixtures, consideration of joint 

effects of multiple pollutants may advance our understanding of air pollution health effects.

Methods—We assessed the joint effect of air pollutants in selected combinations (representative 

of oxidant gases, secondary, traffic, power plant, and criteria pollutants; constructed using 

combinations of criteria pollutants and fine particulate matter (PM2.5) components) on pediatric 

asthma emergency department (ED) visits in Atlanta during 1998–2004. Joint effects were 

assessed using multi-pollutant Poisson generalized linear models controlling for time trends, 

meteorology and daily non-asthma upper respiratory ED visit counts. Rate ratios (RR) were 

calculated for the combined effect of an interquartile-range increment in each pollutant’s 

concentration.

Results—Increases in all of the selected pollutant combinations were associated with increases 

in warm-season pediatric asthma ED visits [e.g., joint effect rate ratio=1.13 (95% confidence 

interval 1.06–1.21) for criteria pollutants (including ozone, carbon monoxide, nitrogen dioxide, 

sulfur dioxide, and PM2.5)]. Cold-season joint effects from models without non-linear effects were 

generally weaker than warm-season effects. Joint effect estimates from multi-pollutant models 

were often smaller than estimates calculated based on single-pollutant model results, due to 

control for confounding. Compared with models without interactions, joint effect estimates from 

models including first-order pollutant interactions were largely similar. There was evidence of 

non-linear cold-season effects.
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Conclusions—Our analyses illustrate how consideration of joint effects can add to our 

understanding of health effects of multi-pollutant exposures, and also illustrate some of the 

complexities involved in calculating and interpreting joint effects of multiple pollutants.

Background

Although many air pollution health effects studies focus on individual pollutants, actual air 

pollution exposures are to multi-pollutant mixtures. Recognition of the importance of air 

pollution mixtures has led to increased interest in assessment of their health effects.1–3 

Various approaches to assessing the health effects of air pollution mixtures have been 

employed.1,4 For example, some studies have assessed health effects using markers of 

exposure to specific mixtures, such as measures of traffic volume or proximity to roadways.5 

Other studies have assessed health effects of mixtures characterized through source 

apportionment metrics,6 air pollution indices or sums of pollutant concentrations.7–12 In this 

study we illustrate and discuss an approach to assessing air pollution mixture health effects 

that extends traditional single-pollutant epidemiologic models of measured pollutant 

concentrations by using models that include several pollutants to estimate the combined 

effect of multiple pollutants (i.e. joint effects).

Considering the joint effects of pollutants, rather than their individual effects, can advance 

our understanding of air pollutant mixture health effects. For example, considering the joint 

effects of groups of pollutants from particular sources may increase our understanding of 

important sources contributing to health effects. In addition, consideration of joint effects 

can address issues of confounding between pollutants and may avoid some of the difficulties 

involved in attempts to isolate individual effects of several correlated pollutants.13,14

To date, joint effects have infrequently been considered in air pollution health effects 

studies,15–21 with few studies assessing the precision of the joint effect estimates.17–21 

Moreover, discussion of the potential complexities involved with this approach has been 

limited.

In this study, we assess the joint effect of pollutants in several combinations of criteria 

gases, particulate matter less than 2.5 μm in diameter (PM2.5), and PM2.5 components, using 

data from a time-series study of air pollution and pediatric asthma emergency department 

(ED) visits in the Atlanta metropolitan area for which model performance has been 

previously described.22 We selected specific combinations representing pollutants with 

shared properties (oxidant gases and secondary pollutants) or sources (traffic and coal-fired 

power plant pollutants), or common air pollutants with U.S. National Ambient Air Quality 

Standards (NAAQS). We also discuss issues that must be considered when applying this 

analytic approach.

Methods

We used the data and modeling strategy applied by Strickland et al.,22 building upon 

previous results by considering joint effects of pollutant combinations. Methods for the 

original study are described in detail elsewhere.22 Briefly, daily concentrations of ambient 1-

hour maximum carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2); 
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8-hour maximum ozone (O3); and 24-hour average PM2.5 and the PM2.5 components 

elemental carbon (EC), sulfate (SO4
2−), nitrate (NO3

−) and ammonium (NH4
+) for the 

period August 1, 1998 through December 31, 2004 were obtained from several ambient 

monitoring networks in Atlanta.23,24 Daily pollutant measurements across monitors were 

combined using population weighting.25 Individual-level data on ED visits during this time 

period were obtained from metropolitan Atlanta hospitals. Using International Classification 

of Diseases, 9th Revision (ICD-9), pediatric asthma ED visits were defined as visits with a 

code for asthma (493.0–493.9) or wheeze (786.09 before October 1, 1998; 786.07 after 

October 1, 1998) that did not have a code for an external injury or poisoning (E800-E999) 

among children aged 5 to 17 years. ED visits for acute upper respiratory infections (codes 

460.0–466.0) among children in the same age group who did not also have a code for 

asthma or wheeze were also identified.

We examined the joint effects of combinations of commonly measured pollutants, selected 

to represent oxidant gases, secondary pollutants, pollutants from traffic and coal-fired power 

plant sources, and criteria pollutants (Table 1). The “oxidant gases” combination included 

the major gaseous oxidant air pollutants (O3, NO2 and SO2). The “secondary” pollutant 

combination included O3 and secondary PM2.5 (for which the concentration was calculated 

as the sum of the concentrations of the major inorganic PM2.5 components SO4
2−, NO3

−, 

and NH4
+). The pollutants in the “traffic” combination were those most closely associated 

with traffic pollution in Atlanta (CO, NO2 and EC).10 Organic carbon (OC) measurements 

were not used in these analyses because OC originates from both primary (e.g. traffic) and 

secondary sources, and speciated organic data needed to apportion OC to sources were 

available for only a limited time period. The pollutants in the “power plant” combination 

(SO2 and SO4
2−) were selected to be relatively (although not completely) specific for 

pollution from coal-fired power plants.26,27 The “criteria pollutants” combination included 

five of the pollutants for which NAAQS are set (including O3, CO, NO2, SO2 and PM2.5; 

excluding lead and particulate matter less than 10 μm in diameter). The “criteria pollutants” 

combination was included because of its potential regulatory significance.

We examined joint effects of pollutant combinations on pediatric asthma ED visits using 

Poisson generalized linear models that accounted for overdispersion. Because previous 

analyses showed different warm and cold-season effects,22 analyses were season-specific. 

We used the same general model form as Strickland et al.22 The dependent variable was the 

hospital-specific daily pediatric asthma ED visit count. For each pollutant in a given 

combination, the primary models included a linear term for the three-day moving average of 

pollutant concentrations [the average of the pollutant concentration on a given day (lag 0) 

and the previous two days (lags 1 and 2)]. Models also included a linear term for the 

logarithm of the daily non-asthma pediatric ED visit count for acute upper respiratory 

infections; cubic polynomials for day-of-season, the moving average of dew point (lags 0–2) 

and the moving average of minimum temperature (lags 1 and 2); indicator variables for year, 

month, day of week or holiday (with holidays having a separate indicator), hospital and 

same-day (lag 0) maximum temperature (for each degree Celsius); and interaction terms 

between month and year, month and lag 0 maximum temperature, and month and day of 

week. We estimated joint effects for an interquartile-range (IQR) increment in the three-day 

moving average of each pollutant concentration as the exponentiated sum (across the 

Winquist et al. Page 3

Epidemiology. Author manuscript; available in PMC 2016 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pollutants in the combination) of the product of each pollutant’s model coefficient and that 

pollutant’s IQR. Standard errors for joint effects were calculated using the variance-

covariance matrices for the individual-pollutant coefficients (for a mathematical 

representation of models and joint effect calculations, see Supplemental Material, Model 

Details).

Initial models included only the pollutants in the specified combination, without interaction 

terms. The results of these models were compared with the results of models that also 

included linear terms for all first-order multiplicative interactions between the pollutants in 

the combination (e.g., for the oxidant gases combination, models included terms for O3, 

NO2, SO2, and the product terms O3*NO2, O3*SO2 and NO2*SO2). In sensitivity analyses, 

we considered models with linear, quadratic and cubic terms for each pollutant, to assess the 

adequacy of using linear pollutant terms. In interaction models and models with quadratic 

and cubic terms, joint effects were calculated for a concentration change equal in magnitude 

to each pollutant’s IQR, starting from each pollutant’s 15th, 25th, or 35th percentile levels. 

We also considered models that controlled for other potentially confounding pollutants.

Concurvity (the analogue of collinearity in non-linear models) was calculated for each 

pollutant as the correlation between observed pollutant concentrations and predicted 

concentrations from linear models including all other model variables (i.e., other pollutant 

terms, time variables and meteorological variables).28 We also calculated concurvity for 

each pollutant in relation to only the other pollutant terms in the models (without time and 

meteorological variables).

Results

The distributions of the individual pollutants during the 1998–2004 warm and cold seasons 

are characterized in Table 2, and correlations between them are shown in Table 3. Warm-

season, correlations ranged from moderately high to high (Spearman correlation coefficient 

(r) 0.62–0.98) among PM2.5, secondary PM2.5, and the PM2.5 component SO4
2−. There were 

moderately high correlations among the traffic-related pollutants CO, NO2, and EC (r= 

0.57–0.75) in both seasons; and between PM2.5 and O3 (r=0.66) in the warm season. Cold-

season correlations were generally lower than warm-season correlations, except for 

correlations between PM2.5 and CO and PM2.5 and EC, which were slightly higher in the 

cold season. For all of the pollutant combinations, all pollutants were simultaneously 

observed in their highest or lowest quartiles on some days in both seasons, so effect 

estimates for IQR increments in each pollutant represent pollutant changes that actually 

occur (eTable 1). The mean daily number of pediatric asthma ED visits was 26.2 (standard 

deviation 14.8) in the warm season and 32.5 (standard deviation 14.1) in the cold season.

Daily increases in all of the selected pollutant combinations were associated with increases 

in daily warm-season pediatric asthma ED visit counts (Figure 1, eTable 2). Warm-season 

rate ratios (RR) for the joint effect of an IQR change in the three-day moving average of all 

pollutants in the selected combinations, in models without interactions, were 1.10 (95% 

confidence interval (CI)=1.04–1.16) for oxidant gases, 1.09 (95% CI=1.04–1.14) for 

secondary pollutants, 1.11 (95% CI=1.06–1.16) for traffic pollutants, 1.06 (95% CI=1.02–
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1.10) for power plant pollutants, and 1.13 (95% CI 1.06–1.21) for criteria pollutants. Warm-

season joint effects were stronger than any of the single-pollutant model effects for the 

pollutants in each combination (eTable 3). If warm-season joint effects had been calculated 

using pollutant coefficients from single-pollutant models, joint effect RRs would have been 

overestimated (calculated RRs: oxidant gases 1.22, secondary 1.12, traffic 1.25, power plant 

1.07, criteria pollutants 1.41), because single pollutant models do not control for potential 

confounding effects of co-varying pollutants. Cold-season joint effects varied across 

pollutant combinations. Overall, these were not statistically significant with the primary 

models, but were highest for the secondary combination (RR per IQR change=1.06, 95% 

CI=0.99–1.14) and the oxidant gases combination (RR per IQR change =1.05, 95% 

CI=0.99–1.13) (Figure 1, eTable 2). Comparison of cold-season joint effects calculated 

based on single-pollutant model coefficients with those from the multipollutant models is 

complicated by some cold-season single pollutant models indicating non-significant 

protective effects (eTable 3). More detailed results from the single-pollutant and primary 

joint effect models are shown in eTables 4 and 5 (pollutant coefficients and p-values) and 

eTables 6,7 (variance-covariance matrix for estimates from primary multi-pollutant models).

Compared with joint effect estimates from models without interactions, joint effect estimates 

from models that included first order interactions between pollutants, with evaluation of the 

joint effect for a change from the 25th to the 75th percentile level for each pollutant, were 

generally not substantially different (Figure 1, eTable 2). Sensitivity analyses evaluating 

joint effects at other points in the pollutant distributions yielded similar conclusions relative 

to no-interaction models (eFigures 1 and 2). Based on consideration of individual interaction 

terms or consideration of likelihood ratio tests for the interaction terms together, warm-

season models including first-order pollutant interactions generally did not show strong 

statistical evidence of important interactions (eTables 2 and 4), but cold-season models for 

the oxidant gases and criteria pollutants combinations did (likelihood ratio test p-values for 

interaction terms together <0.01, eTables 2 and 5).

In sensitivity analyses, compared with estimates from models with only linear pollutant 

terms, joint effect estimates for an IQR change in each pollutant (starting at the 25th 

percentile) from models including quadratic and cubic pollutant terms were slightly lower 

for the warm-season traffic and criteria pollutant combinations; and notably higher for 

several cold-season combinations, particularly the oxidant gases, secondary and oxidant 

pollutant combinations (Figure 1). Evaluation of joint effects at other points in the pollutant 

distributions gave similar conclusions (eFigures 1 and 2). Dose-response curves based on the 

results of the models with and without non-linear terms for the oxidant gases, secondary and 

criteria pollutants combinations are shown in eFigure 3. Statistical evidence for the 

importance of the quadratic and cubic terms was observed for the warm-season traffic 

combination, and the cold-season secondary, criteria pollutants and power plant 

combinations (p-values for likelihood ratio tests for non-linear terms together <0.03, see 

eTable 8 for joint effect estimates and eTables 9 and 10 for detailed model results).

Joint effect estimates from models controlling for potentially confounding pollutants that 

were not included in calculation of joint effects were generally lower than joint effect 

estimates from models including only the pollutants in the joint effect (except for the traffic 
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combination in both seasons, and the oxidant gases combination in the cold season for which 

estimates were not substantially different) (see eTable 8 for joint effect estimates and 

eTables 9, 10 for detailed model results). The difference was most marked for the warm-

season secondary combination when controlling for CO, NO2 and SO2 (RR=1.02, 95% 

CI=0.96–1.08 vs. 1.09, 95% CI=1.04–1.14 in model with only O3 and secondary PM2.5) and 

for the warm-season power plant combination when controlling for O3, CO, NO2 and EC 

(RR=1.00, 95% CI 0.96–1.05 vs. 1.06, 95% CI=1.02–1.10 in model with only SO2 and 

SO4
2−).

Measures of concurvity between pollutants and all other variables in the joint effect models 

were high in both seasons, ranging from 0.63 to 0.95 for the various pollutants in the models 

without interaction terms (eTables 4,5). Concurvity was generally lowest for SO2 and 

highest for O3. Lower, but still substantial, concurvity values were also seen for the 

pollutants in single-pollutant models (concurvities of 0.61–0.91), as well as for pollutants in 

multi-pollutant models in relation to only the other pollutants in the models (warm season 

0.26–0.87, cold season 0.05–0.83 in no-interaction models). As expected, concurvities 

increased when first-order interaction terms were included.

Discussion

We calculated joint effects for several pollutant combinations selected based on common 

pollutant properties, relevance to air quality standards, or common sources. We observed 

warm-season joint effects representing increases of 6–13% in daily pediatric asthma ED 

visit rates for an IQR change in all of the pollutants in the combinations. Warm-season 

pediatric asthma appears to be impacted by a variety of pollutant combinations, particularly 

those including O3 and/or NO2. Joint effects for cold-season pediatric asthma showed more 

heterogeneity across mixtures, with strong effects observed for the oxidant gases, secondary 

and criteria pollutants combinations when non-linear effects were included in the models. 

Our results illustrated that calculation of joint effects from multi-pollutant models can avoid 

overestimation of joint effects that would result from their calculation based on single-

pollutant model effect estimates, because single-pollutant model estimates may include 

some of the effect of correlated pollutants due to mutual confounding, which can be 

substantial. Our results also illustrate some of the complexities involved in calculating and 

interpreting joint effect estimates.

To calculate a joint effect, one has to calculate the effect of some specified change in each 

pollutant in the combination. The degree of change in each pollutant used in the calculation 

could be determined in several ways. We calculated the joint effect of an IQR change in 

each pollutant, since that has a basis in actual pollutant distributions. However, the IQR is 

specific to the location and time period and may vary for a given pollutant depending on the 

metric used (e.g., central monitor vs. population weighted average). Use of the IQR could 

also lead to combinations of pollutants with greater variability appearing more harmful (i.e., 

having a higher effect estimate per IQR change in pollutant concentrations) than 

combinations of pollutants with less variability, even if those combinations are not 

inherently more harmful. In addition, contrasts other than an IQR change may be of interest 

to risk assessors. To allow examination of other contrasts of interest, we have included 
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information in the supplemental material about the individual parameter estimates (eTables 

4 and 5) and the corresponding covariance matrix (eTables 6 and 7).

In sensitivity analyses, we explored the impact of several model specification decisions on 

the joint effect estimates. One decision relates to the approach to potential confounding by 

pollutants not included in the joint effect of interest. In our sensitivity analyses, models 

controlling for common, potentially confounding pollutants other than those in the joint 

effect often showed lower joint effect estimates than models that included only pollutants in 

the joint effect. Changes in joint effect estimates observed when including additional 

pollutants in the model could be due to control for confounding, but could also be due to 

differential measurement error. In a multi-pollutant model, measurement error can cause the 

effect estimate for a better-measured pollutant to represent some of the effect of a correlated 

but less-well-measured pollutant, making individual pollutant effect estimates less 

accurate.29,30 In the presence of differential measurement error, adding other pollutants to 

the model could decrease the accuracy of the joint effect estimate. Differential measurement 

error may have impacted our joint effect estimates, with the degree of the impact depending 

on true pollutant effects, correlations between pollutants, relative degrees of measurement 

error, and correlations between measurement errors.29,31

Other model specification issues relate to how pollutants are included in the model. 

Pollutants are often included in models as linear terms, as in our primary analyses. Our 

sensitivity analyses showed that an assumption of linear pollutant effects (on the log scale) 

may be inadequate. We observed statistical evidence for the importance of the quadratic and 

cubic terms in some cases (particularly the secondary, oxidant gases and criteria pollutants 

combinations in the cold season). Violation of the assumption of a log-linear effect of 

pollutant concentration across each pollutant’s concentration range could be magnified in a 

joint effect model because the assumption is made for several pollutants. Decisions also 

need to be made about which interactions to consider, and how to include those interactions 

in the model (i.e., linear terms or flexible forms). In some of our models, there was statistical 

evidence of important interactions. Models that include interaction terms may more 

accurately represent joint effects than models without interaction terms, but estimates from 

them may be less precise due to high correlations between model terms.

Our goal was to evaluate the joint effects approach as a method for examining air pollution 

mixture effects, but our analyses have limitations. Direct comparison of joint effect 

magnitudes across our pollutant combinations requires caution. Our combinations were 

carefully selected, and provided a good framework for examining issues surrounding 

quantification of joint effects, but they were selected for different reasons and included 

different numbers of pollutants (which alone can impact joint effect magnitudes). Some 

pollutants were in multiple combinations, which can contribute to similarities in observed 

joint effects. In addition, for combinations selected based on common sources, our results 

should be viewed as estimates of the joint effects of selected pollutants from shared sources 

and not as the total effects of those sources per se. Finally, results of time-series studies of 

acute air pollution health effects can be sensitive to model specification decisions other than 

those related to air pollutants. Our basic model was used in a previous study of acute air 

pollution effects on pediatric asthma;22 that paper presented several sensitivity analyses 
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(controlling for pollen levels, not controlling for non-asthma upper respiratory infection ED 

visit counts, and using three alternate methods for time trend control) that indicated that the 

basic model was robust.22

Some previous studies have used multi-pollutant models to calculate joint effects of 

pollutant combinations on pediatric respiratory outcomes, using approaches similar to ours. 

An analysis of pre-randomization-phase data from an asthma management study included 

estimation of the joint effect of pairs of common air pollutants on pediatric asthma 

exacerbations.20 In that study, the strongest single-pollutant model effect estimates were 

observed for CO and NO2. Joint effect estimates from models including CO and NO2 were 

closer to the strongest single-pollutant model effect estimates than to an effect estimate 

based on the sum of single-pollutant model effects. A study of associations between PM2.5 

and O3 and peak expiratory flow among children in Mexico City found that both pollutants 

were associated with decreased peak expiratory flow, but the joint effect (per IQR change) 

of the two pollutants was lower than the sum of their effects from single pollutant models.17

Other studies have considered air pollutant joint effects in relation to other outcomes. 

Roberts18 and Roberts and Martin19 modeled the total acute effect of PM10, O3, NO2, SO2 

and CO on mortality using time-series models that calculated the overall effect of the 

pollutants (per standard deviation change in each pollutant), estimating the relative 

contribution of each pollutant to the overall effect through pollutant weights. Burnett, et al16 

studied the association between particulate and gaseous air pollutants and cardiorespiratory 

hospitalizations in Toronto, Canada and calculated the total effect (for a change in each 

pollutant equal to its mean value) of pollutants selected using a forward selection procedure. 

In a separate study, Burnett, et al15 examined the association between daily ambient air 

pollution and mortality in 8 Canadian cities. They presented single-pollutant and joint 

effects (for a change in each pollutant equal to its mean value) for PM2.5 and PM10-2.5 and 

for a combination four gases (O3, CO, SO2 and NO2). They reported that the joint effect for 

the gases calculated in this way was greater than the joint effects for the particles. Jerrett, et 

al examined the “cumulative risk index” (calculated as for our joint effects) for long-term 

exposure to O3, PM2.5 and NO2 in relation to cardiovascular mortality.21 They found that 

the joint effect from a two-pollutant model was larger than the joint effect calculated based 

on single-pollutant model results. Many other studies have considered multi-pollutant 

models, but have focused on single pollutant effects, controlling for other pollutants, rather 

than on joint effects.23,30,32,33

One reason the approach used in our analyses has not been more commonly used is concern 

that collinearity (also called concurvity in non-linear models) can lead to instability in effect 

estimates.1 Collinearity can lead to inflation of the estimated variances of effect estimates,34 

and the degree of collinearity in time-series models of air pollution health effects can be 

substantial.28 Given the need to control for confounding by variables, such as temperature, 

that are highly correlated with pollutant concentrations, some degree of collinearity is 

inevitable in time-series studies of air pollution health effects. However, collinearity must be 

considered in relation to power.35 Our study used a long time series (6 years) with fairly 

high daily event counts, leading to ample power.36 This may allow for a higher degree of 

collinearity with less adverse impact on model performance than would be the case for a 

Winquist et al. Page 8

Epidemiology. Author manuscript; available in PMC 2016 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



study with a shorter time series or lower average daily counts. Effect estimate variances in 

our models did not appear severely inflated, providing some reassurance that concurvity was 

not excessive in relation to our study size. Nevertheless, when considering our results, one 

should recognize that pollutants vary in the degree to which they demonstrate collinearity 

with other variables in the model.28 This can lead to better power for detection of effects of 

some pollutants, or pollutant combinations, than others.36

Recognition of the importance of air pollution mixtures has led to increased interest in air 

pollution cumulative risk assessments (e.g., a recent risk assessment for PM2.5 and O3
37). 

Cumulative risk assessment considers the combined impact of multiple stressors on health 

outcomes, with consideration of potential interactions between stressors.38,39 Epidemiologic 

studies like this one can contribute to cumulative risk assessments,40 by providing dose-

response functions. To be most useful for risk assessments, epidemiologic studies must 

present dose-response estimates for the same multi-pollutant contrasts considered in the risk 

assessment, or pollutant effect estimates from multi-pollutant models with their variance-

covariance matrix to allow adaptation of results to other contrasts.14,40 Our consideration of 

only commonly measured pollutants may facilitate use of our results in risk assessment. We 

have included information relevant to risk assessment in our supplementary material. 

However, individual pollutant effect estimates presented in the supplementary material are 

subject to the issues discussed above relating to confounding and measurement error.

In summary, our analyses illustrate the feasibility of a straightforward approach to modeling 

joint effects in a study of acute air pollution health effects with a long time series and fairly 

high average daily outcome counts. Our results shed light on pollutant combinations that 

may have important acute effects on pediatric asthma ED visits, and provide estimates 

(potentially useful for risk assessments) of the joint effects of those combinations. They also 

illustrate some of the complexities involved in calculating and interpreting joint effects of 

multiple pollutants. If the complexities are appropriately considered, calculation of joint 

effects is appealing because it transparently and explicitly specifies the contributions of 

various pollutants to the health effects of mixtures. This approach has promise for 

application to time-series analyses of joint effects of multiple pollutants in relation to 

various health endpoints in studies with sufficient power.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Rate ratios and 95% confidence intervals for single pollutant effects per interquartile-
range increment in each pollutant from single pollutant models and for corresponding joint 
effects from multi-pollutant models
For each combination of pollutants, single-pollutant rate ratios (shown with horizontal line 

markers) are followed by joint effect rate ratios from the primary multi-pollutant models, 

which had linear pollutant terms and no interactions (“Primary”, circle markers), multi-

pollutant models with linear pollutant terms and first order interactions between pollutants, 

with IQR increments evaluated starting at the 25th percentile for each pollutant 

(“Interaction”, triangle markers), and multi-pollutant models with linear, quadratic and cubic 

pollutant terms and no interactions, with IQR increments evaluated starting at the 25th 

percentile for each pollutant (“Non-linear”, diamond markers). For comparability with 

previous analyses,22 the analysis used the year-round IQR during 1993–2004 for O3, NO2, 

CO and SO2, and during August 1, 1998-December 31, 2004 for PM2.5 and PM2.5 

components. The IQRs used in the analysis were: O3 29.18 ppb, CO 0.66 ppm, NO2 12.87 

ppb, SO2 10.51 ppb, PM2.5 9.18 μg/m3, EC 0.69 μg/m3, SO4
2− 3.45 μg/m3, Secondary 

PM2.5 4.52 μg/m3. PM2.5: particulate matter <2.5 μm in diameter, O3: ozone, NO2: nitrogen 

dioxide, SO2: sulfur dioxide, Sec PM: Secondary PM2.5, CO: carbon monoxide, EC: 

elemental carbon component of PM2.5, SO4: Sulfate component of PM2.5. Secondary PM2.5 

was calculated as the sum of the concentrations of selected PM2.5 components including 

nitrate (NO3
−), ammonium (NH4

+), and sulfate (SO4
2−).
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