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Abstract

Background—Fine particulate (PM2.5) air pollution has been consistently linked to survival, but 

reported effect estimates are geographically heterogeneous. Exposure to different types of particle 

mixtures may explain some of this variation.

Methods—We used k-means cluster analyses to identify cities with similar pollution profiles, 

(i.e. PM2.5 composition) across the US. We examined the impact of PM2.5 on survival, and its 

variation across clusters of cities with similar PM2.5 composition, among Medicare enrollees in 81 

US cities (2000–2010). We used time-varying annual PM2.5 averages, measured at ambient central 

monitoring sites, as the exposure of interest. We ran by-city Cox models, adjusting for individual 

data on previous cardiopulmonary-related hospitalizations and stratifying by follow-up time, age, 

gender and race. This eliminates confounding by factors varying across cities and long-term 

trends, focusing on year-to-year variations of air pollution around its city-specific mean and trend. 

We then pooled the city-specific effects using a random effects meta-regression. In this second 

stage, we also assessed effect modification by cluster membership and estimated cluster-specific 

PM2.5 effects.

Results—We followed more than 19 million subjects and observed more than 6 million deaths. 

We found a harmful impact of annual PM2.5 concentrations on survival (HR = 1.11 [95% 

confidence interval = 1.01–1.23] per 10 µg/m3). This effect was modified by particulate 

composition, with higher effects observed in clusters containing high concentrations of nickel, 

vanadium and sulfate. For instance, our highest effect estimate was observed in cities with harbors 

in the Northwest, characterized by high nickel, vanadium and elemental carbon concentrations 

(1.9 [1.1–3.3]). We observed null or negative associations in clusters with high oceanic and crustal 

particles.
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Conclusions—To our knowledge, this is the first study to examine the association between 

PM2.5 composition and survival. Our findings indicate that long-term exposure to fuel oil 

combustion and power plant emissions have the highest impact on survival.

Long-term exposure to fine particulate matter (PM2.5, i.e. particles with aerodynamic 

diameter ≤ 2.5 µm) has been consistently associated with adverse health, including 

mortality.1,2 The effects of long-term PM2.5 exposure on mortality have been shown to 

differ in magnitude by location. Pelucchi et al.3, found heterogeneous effects of long-term 

PM2.5 exposure on mortality across Europe, in a review meta-analysis of 6 studies, while 

Hoek et al.4, in a large review of cohort studies on PM2.5 and mortality, also found both a 

notable pooled effect estimate and heterogeneity in effects across studies, likely due to 

differences in particle composition and population characteristics. Similarly, Zeger et al.5 

found heterogeneous effects across the US, with the highest effects in the central US, 

somewhat lower, effects in the eastern US and no effects in the West. Many factors have 

been identified that influence the heterogeneity in the effect estimates6–9; differences in 

particulate composition, specifically, have been proposed as a key contributing factor to this 

heterogeneity.4

Nationwide studies have shown that particulate composition varies across the US.10 To date, 

several studies have assessed the association between particulate components or sources and 

acute adverse effects. Franklin et al.11 found increased non-accidental mortality rates when 

PM2.5 mass contained a higher proportion of arsenic, sulfate, silicon or nickel, in a study 

conducted in 25 US communities. These results are in agreement with a recent study12 

reporting modification of sulfate and silicon on the 2-day PM2.5 and all-cause mortality 

association. Krall et al.13 directly linked short-term exposures to elemental and organic 

carbon, and silicon to mortality. Zanobetti et al.14 found the association between PM2.5 and 

cardiovascular (CVD) admissions to be higher when the mass was high in bromine, 

chromium, nickel and sodium. Bell et al.15 reported associations between CVD emergency 

admissions and exposure to nickel, as well as vanadium and elemental carbon. Similarly, 

Peng et al.16 and Tolbert et al.17 found that increases in elemental carbon and organic carbon 

are associated with increase in risk of CVD emergency admissions.

It has not yet been determined, however, whether particle composition also modifies the 

association between long-term PM2.5 exposures and mortality, and whether it explains some 

of the observed effect heterogeneity across locations and studies. A recent European study, 

investigating the association between PM2.5 components and CVD survival, reported no 

important associations between any of the PM2.5 components and CVD mortality.18

Notably, studies of long-term effects of PM2.5 on survival rely on primarily cross-sectional 

exposure contrasts and, hence, are subject to potential confounding by factors that vary 

across cities. Moreover, such studies traditionally follow cohorts over time and examine the 

association of survival time with PM2.5 in a Cox proportional hazards model, where most of 

the exposure contrast is across cities. Causal modeling, in contrast, seeks to estimate the 

difference in the expected value of mortality in the population under the exposure they 

received versus what it would have been had they received an alternative exposure. Since 

that counterfactual cannot be observed, various methods – such as instrumental variables,19 
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marginal structural models,20 and mendelian randomization21 – seek legitimate surrogates 

for the unobserved potential outcome. Mendelian randomization, for example, can be 

thought as a method for observational studies that is analogous to randomized trials, with the 

goal of making causal inferences about modifiable risk factors and adverse health, by 

focusing on variations in exposure thought to be uncorrelated with factors confounding the 

exposure-outcome association.22

For this study we focused on within-city year-to-year fluctuations in PM2.5 about its long-

term trend, as representing exposure variations that are unlikely to be confounded. For 

example, a variable usually included as a confounder in PM2.5-mortality studies is smoking. 

Smoking rates likely vary across cities, within cities across years, and within cities and 

years, across individuals. Our method seeks to decompose these three sources of variation. 

By conducting city-specific analyses, any potential confounding by factors varying across 

cities is eliminated. By removing long-term trends, any potential confounding by long-term 

trends in within-city smoking trends is also eliminated. Finally, since we estimate city-

specific annual PM2.5 averages and, thus, assign the same exposure to all subjects within 

city and year, confounding by varying smoking rates across individuals is also not possible. 

Our results, therefore, could only be confounded by variables that fluctuate with PM2.5 

across their long-term trends. Given that these fluctuations in yearly PM2.5 concentrations 

occur mostly due to weather conditions, such as prevailing wind direction, any residual 

confounding is unlikely. With this method, hence, we approximate randomization of 

exposure with respect to confounders. We applied this approach to all-cause mortality data 

from Medicare enrollees from 81 cities, an open cohort of more than 19 million subjects. 

Although effect modification by other factors is likely,6–9 in this study we further examine 

whether particulate composition, specifically, modifies the PM2.5-mortality relationship.

Methods

Data collection

Study Population—We obtained data from fee-for-service Medicare beneficiaries (≥65 

years of age) from 81 cities across the United States for the years 2000–2010. Each 

Medicare record contains information on age, race, zip code, county and state of residence. 

Furthermore, for subjects hospitalized during this period, we obtained records for the dates 

and diagnoses of each admission. Specifically, using codes from the International 

Classification of Diseases, 9th Revision (ICD-9; Center for Disease Control and Prevention 

2008), we obtained admission records for congestive heart failure (CHF; code 428), 

myocardial infarction (MI; code 410), chronic obstructive pulmonary disease (COPD; codes 

490–492, 494–496) and diabetes (code 250), as well severity of each admission, expressed 

by the number of days spent in the coronary or intensive care units.

Medicare is an open cohort; subjects entered our cohort in 2000, or upon their enrollment 

after 2000. After enrollment, each subject was followed over time until the year of their 

death or December 2010 (end of our study period).

Although the Medicare data do not have information on individual-level behavioral risk 

factors (e.g. smoking, and body mass index), they do have rich individual-level information 
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on cause-specific hospitalizations and age, sex, race and zip code-level of residence. In 

addition, it has been shown that use of these data yield effect estimates that are similar to 

previously published studies that had included individual-level variables in their analyses.23 

Furthermore, our focus on year-to-year fluctuations in PM2.5 about its within-city trend 

makes it unlikely that potential individual-level confounders, such as individual 

socioeconomic status (SES), smoking and diet, fluctuate similarly and are correlated with 

our exposure.

Air pollution data—We obtained PM2.5 and particulate component data from the US 

Environmental Protection Agency’s (EPA) Air Quality System (AQS) database (http://

www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm). In our analyses we included 

sites with at least 75% non-missing observations, both total and in each season, and 

calculated annual PM2.5 and PM2.5 component means. We chose 81 cities satisfying these 

criteria.

The PM chemical species included in the clustering were the ions nitrate, sodium ion, 

potassium ion, sulfate, ammonium, the elements sulfur, copper, iron, zinc, nickel, vanadium, 

titanium, magnesium, potassium, silicon, sodium, chlorine, calcium, bromine, strontium, 

lead and manganese, elemental carbon, and organic carbon. PM2.5 monitoring sites are 

population-oriented, measuring exposures where people live and work.24 In our study, we 

used data from between one monitor per city up to 10 monitors in large Metropolitan 

Statistical Areas, such as New York, NY and Los Angeles, CA. For speciated PM2.5 data, 

there was only one available monitor per city, with the exception of New York, NY (n=3), 

St. Louis, MO (n=2), Cleveland, OH (n=2), Philadelphia, PA (n=2) and Milwaukee, WI 

(n=2). When more than one monitor was available in a city, we calculated annual city-

specific averages.

Data analysis

Spatial Clustering Based on PM2.5 Composition—To identify cities with similar 

long-term PM2.5 composition, we performed a cluster analysis, as described by Austin et 

al.25 Briefly, modified Z-scores for each chemical species were calculated using the ratio of 

the species average between January 2003 and December 2008 at each site, divided by the 

corresponding PM2.5 concentration at that site. We then employed the k-means clustering 

algorithm to cluster together sites that have the most similar PM2.5 composition, using the Z-

scores. A detailed description of the clustering algorithm we employed is presented in the 

eAppendix.

Health Models—In contrast to prior studies, we fit separate survival analyses in each city, 

to avoid confounding by factors varying across cities. We employed Cox’s proportional 

hazards models, with age (5-yr categories), sex, race and follow-up time as the stratification 

variables. Follow-up started on 1 January following entry into the cohort, and we used 

annual PM2.5 mass concentrations as time-varying exposures for all participants. We used 

the counting process extension of the proportional hazards model by Andersen and Gill,26 

thus creating multiple observations for each subject, with each observation representing a 

single person-year of mortality follow-up.
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We adjusted linearly for year, thus estimating whether year-to-year PM2.5 variations around 

its long-term trends are associated with year-to-year survival variations in each city. Also, 

this eliminates confounding due to long-term trends. To increase the precision of the 

estimated effects, we adjusted for any previous admission for CHF, COPD, MI or diabetes, 

as well as number of days spent in the intensive and coronary care units. These outcomes 

were selected based on their known association with mortality.27 We also adjusted for zip 

code-level median income, as a proxy for SES, using zip code level data obtained from the 

2000 US Census Bureau (Census 2000, http://www.census.gov). Finally, as a sensitivity 

analysis, we included annual city-specific smoking rates, obtained from the Behavioral Risk 

Factor Surveillance System (http://www.cdc.gov/brfss/), as a control to assess whether our 

method is indeed robust to confounding by smoking.

We combined the city-specific health effect estimates in a second stage, using a random 

effects meta-analysis.28

Effect Modification by Particulate Composition—We also investigated whether the 

association between long-term PM2.5 exposure and mortality is modified by PM2.5 

composition. To do so, we added dummy variables for each cluster in the second-stage 

meta-regression and thus obtained the estimated deviation from the overall effect of PM2.5 

in each cluster, assessing whether the effect estimate in a specific cluster was significantly 

different from the pooled effect estimate.

All results are presented per 10 µg/m3 of PM2.5. For our statistical analyses we used the SAS 

software, version 9.3 (SAS Institute Inc., Cary, NC, USA), and the R Statistical Software, 

version 2.14.1 (Foundation for Statistical Computing, Vienna, Austria).

Results

The distribution of number of subjects, deaths and cause-specific hospitalizations in the 81 

cities in our study are presented in the Table. Our cohort consisted of 19,274,534 subjects 

and we observed 6,383,358 deaths (33.1%) before the end of follow-up. On average, the 

participants were aged 75.3 years (SD = 7.5); 57.6% were female and 87% white.

The average PM2.5 concentration was 12.8 µg/m3 (SD = 1.7). Overall, we observed positive 

associations between long-term exposure to PM2.5 and mortality, with a hazard ratio (HR) of 

1.11 (95% confidence interval [CI] = 1.01–1.23) per 10 µg/m3 increase in the annual PM2.5 

concentrations. Including annual city-specific smoking rates in the model did not affect the 

estimated HRs.

Effect Modification by Particulate Composition

Spatial Clusters—We identified 21 unique clusters: 4 single-city clusters, 6 clusters with 

2 cities and 11 clusters with 3 or more cities. A map of all clusters is presented in eFigure 1. 

The chemical characteristics each cluster are presented in a heat map (eFigure 2), while 

detailed ratios of species over PM2.5 concentrations by cluster are presented in eFigure 3.
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Briefly, clusters can be described in six general groups. The clusters in the first group 

(clusters 1–5 and 7) are located in the eastern US, and they have high sulfate concentrations, 

consistent with power plant regional emissions. The clusters in the second group (clusters 6, 

8 and 11) are located in the Midwest and are characterized on average by high sulfate, 

nitrate and metal concentrations, such as manganese, zinc, iron, and lead, indicating more 

industrialized areas including smelters or metallurgic activity. The clusters in the third group 

(clusters 10, 13 and 16) include cities with large seaports and are characterized by high 

sodium, chlorine, and potassium concentrations, associated with oceanic particles, and high 

nickel and vanadium concentrations, consistent with heavy fuel oil combustion from ships. 

The clusters in the fourth group (clusters 12 and 14) are located inland in the western US 

and have high crustal element concentrations, such as calcium, silicon, titanium and iron. 

Clusters in the fifth group (clusters 9, 15 and 17) do not show a geographic cohesiveness, as 

they are located throughout the Western and Central US. They are characterized by low 

sulfate and high concentrations of nitrate and K, associated with agricultural activities and 

biomass burning, and crustal elements. Finally, the sixth grouping contains the four single-

city clusters (see eAppdendix).

PM2.5 composition and mortality—The effects of PM2.5 by cluster are presented in 

Figure 1 and in eTable 2. We observed varying effect estimates across clusters, with most 

hazard ratios higher than the null. Specifically, we found that the effect estimates were 

different than the pooled average in 4 clusters (namely clusters 2, 10, 13 and 16) and 

marginally different in clusters 8 and 11. The confidence intervals in part reflect the number 

of cities within a cluster, with single-city clusters having the widest CIs.

The highest effect estimate was observed in cluster 16 (HR = 1.9 per 10 µg/m3 of PM2.5 

[95%CI = 1.1–3.3]). Cluster 16 contains Seattle, WA, and Portland, OR, and is characterized 

by high elemental carbon, nickel and vanadium concentrations. High effect estimates were 

also observed in cluster 10 (1.7 [1.1–2.7]), containing cities with harbors in the southern and 

southeastern US and also characterized by high vanadium concentrations. In cluster 2 the 

observed HR was 1.5 (1.1–1.9); cluster 2 includes several Southeastern cities and is 

characterized by very high sulfate concentrations. High effects were also observed in cluster 

11 (1.5 [0.94–2.4]), a cluster containing Midwestern cities with high concentrations of 

metals consistent with industrial processes, such as lead, manganese and zinc, as well as 

sulfate. We also observed a high effect estimate in Birmingham, AL (1.7 [0.76–3.6]). 

Birmingham has the highest elemental carbon concentrations, as well as high concentrations 

of the metals manganese, zinc, lead and iron, consistent with emissions from industrial 

facilities located in the area.

In cluster 13, we observed lower PM2.5 effects compared with the pooled effect across all 

cities (0.44 [0.25–0.77]). Cluster 13 contains San Diego and Ventura, CA, and is 

characterized by high concentrations of oceanic particles, as indicated by the high sodium, 

chlorine and potassium levels, as well as high nitrate concentrations. Lower effects were 

also observed in cluster 15 (0.65 [0.34–1.3]) and cluster 14 (0.77 [0.43–1.4]), that both have 

high concentrations of crustal species.
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Discussion

We conducted a nationwide, multi-year study to assess the effect of long-term PM2.5 

exposures on mortality, using data from Medicare enrollees. We followed more than 19 

million subjects between 2000 and 2010, with more than 6 million deaths, and observed 

harmful effects associated with a 10 µg/m3 increase in annual PM2.5. We also examined 

whether the observed effects are modified by particle composition, as defined by clusters of 

PM2.5 species concentrations. Our analyses suggest that exposure to different PM2.5 

mixtures results in varying effects on mortality.

Contrary to previous studies of air pollution and survival, we conducted our analyses by 

city, eliminating confounding that could arise by factors varying across cities. We 

investigated whether year-to-year PM2.5 fluctuations, about its long-term mean, is associated 

with year-to-year mortality fluctuations within-city. This design also eliminates potential 

confounding by long-term trends. Although this design could lead to loss of power, this is 

likely not an issue in this study, given the very large size of our cohort.

An exposure increase in 10 µg/m3 of annual PM2.5 average was associated with a HR of 

1.11 (95%CI = 1.01–1.23). This result is in very good agreement with previously published 

mortality effects.4 Specifically, a recent paper using data from the ESCAPE cohort reported 

HR = 1.13 (95%CI = 1.01–1.25) per 10 µg/m3 of PM2.5,29 and the most recent reanalysis of 

the Harvard Six City Study reported a HR of 1.14 (95%CI = 1.07–1.22).30 Although we 

were not able to include potential confounders at the individual level in our analyses, we 

believe that any bias is likely to be small given the design’s focus on pollution fluctuations 

unlikely to be associated with those confounders, the similarities of our findings with other 

studies, the very large number of subjects included, and the use of hospital admissions as 

proxies for health conditions. In a direct comparison of the Medicare cohort with the 

Harvard Six Cities study and the American Cancer Society study, conducted in the same 

cities as these two cohorts, Eftim et al.23 also showed that use of Medicare data for mortality 

analyses is appropriate.

Although several studies have assessed the effects of PM2.5 species,11,13 and sources,31 on 

acute mortality, no studies have investigated the relationship between particulate mixtures 

and survival. Only one study in Europe, also using ESCAPE data, assessed the effect of 

exposure to PM2.5 species on cardiovascular survival.18 For that study, 19 cohort-specific 

Cox proportional hazard models were run and a combined effect estimate was calculated 

with a random effects meta-analysis. The authors assessed exposures to copper, iron, 

potassium, nickel, sulfur, silicon, vanadium and zinc and found no associations with any 

species, with the exception of suggestive evidence of an association with sulfate. The main 

difference between that study and ours is that they used time-invariant PM2.5 species 

concentrations, predicted at the residences of the study participants using Land Use 

Regression Models.

We employed a clustering algorithm to identify cities with similar mixtures of air pollution 

and assessed the effect of these mixtures on survival. We observed the highest associations 

in clusters 10 and 16. These clusters included cities with harbors and were characterized by 
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high nickel and vanadium concentrations, and low ratios of nickel and vanadium, indicating 

high emissions from ship heavy fuel oil (bunker fuel) combustion.32 High effects in cities 

with high concentrations of these two metals are consistent with prior literature of harmful 

impacts of fuel oil combustion on acute health.33–35 Toxicological studies also support the 

epidemiologic evidence.36–38

We also observed strong effects in clusters with high secondary particle concentrations, such 

as cluster 2 and 10. In these clusters we observed low elemental carbon to organic carbon 

ratios, indicating large secondary contributions, and high sulfate concentrations. Sulfate is 

associated with sulfur dioxide power plant emissions,39,40 and is formed in the atmosphere 

by photochemical reactions,41 leading to high spatial homogeneity.42 Studies of acute 

outcomes have also observed increased effects of sulfate-rich secondary PM2.5 

concentrations and power plant emissions.35,43

Finally, exposures to air pollution in industrialized areas, such as cluster 11 and 

Birmingham, AL, were also associated with survival in our analyses. Industrial emissions 

are usually characterized by high concentrations of transition metals, including iron, zinc, 

manganese and copper, as well as lead. Transition metals are capable of redox recycling; 

exposure to airborne transition metals, therefore, can lead to oxidative stress, which 

underlies in part the toxicity of ambient particles.44 It has also been shown, in a rat study, 

that transition metals are a key determinant of acute inflammatory responses.45

We found no, or opposite, effects in clusters with high concentrations of crustal and oceanic 

particles. This is contrary to some studies of acute effects; Zanobetti et al., for instance, 

reported an association between sodium exposures and CVD admissions,14 and Krall et al.13 

observed an association between Si and mortality. This suggests that short-term exposures to 

such particles are related to acute effects, but the biological pathways for survival could be 

different.

The compositional pollution profile of each city likely plays a role in particle toxicity. For 

instance, we observed high effect estimates for clusters 10 and 16, but very low effect 

estimates in cluster 13, with all clusters belonging in the same group. We also observed high 

contributions of nickel and vanadium to PM2.5 concentrations in cluster 13, albeit not as 

high as in clusters 10 and 16, and very high oceanic contributions (eFigure 3). This suggests 

that exposure to different air pollution mixtures, and not solely sources, impacts survival. 

The possibility of effect modification by other factors, nevertheless, cannot be excluded; 

investigation of multiple potential effect modifiers, however, was not within the scope of 

this study.

This study has some limitations. Information on individual characteristics, such as smoking 

and weight, is not available for Medicare enrollees. Given our choice of study design, 

however, any differences in such variables across cities, or within-city long-term trends, 

cannot confound our estimates. Also, Medicare does not provide the underlying cause of 

death; we were, thus, able to assess only all-cause mortality.

Additionally, we analyzed only species provided by the EPA Speciation Trends Network 

that satisfied our inclusion criteria. The resulting air pollution mixtures, therefore, might not 
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accurately describe the actual mixtures to which the subjects are exposed. This could result 

in measurement error, if a city is assigned to the wrong cluster. However, any such error is 

non-differential with respect to mortality and could only bias our results towards the null. 

Another source of measurement error, also non-differential in this setting, could arise from 

use of PM2.5 concentrations measured at central ambient monitors. This error has been 

shown to bias effect estimates towards the null, with more bias expected with larger 

contributions of local sources to the PM2.5 concentrations.46

In conclusion, we observed harmful associations between PM2.5 and survival. More 

importantly, we showed that these associations vary depending on the different types of air 

pollution mixtures, with higher effects observed in cities with high concentrations of fuel oil 

combustion particles, indicating harbor-related emissions, and sulfate, a tracer for power 

plant emissions. Findings of our study can be used to inform policy for targeted source-

specific regulations. To our knowledge, this is the first study that provides strong evidence 

that chronic effects of PM2.5 on mortality are modified by simultaneous exposures to 

multiple PM2.5 components.
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Figure 1. 
Within-cluster (CL) estimated HR per 10 µg/m3 of PM2.5 (circles) and 95% CIs (lines). The 

results are ordered according to the 6 groups of clusters.
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