Supporting Information

MALDI-ISD Mass Spectrometry Analysis of Hemoglobin Variants: a top-down approach to the characterization of hemoglobinopathies

Roger Théberge1, Sergei Dikler2, Christian Heckendorf1, David H. K. Chui3, Catherine E. Costello1, and Mark E. McComb1

1. Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118
2. Bruker Daltonics Inc., 40 Manning Road, Billerica, MA 01821
3. Department of Medicine, Boston University School of Medicine, Boston, MA 02118

Supplemental Tables 1 and 2.
Supplemental Figures 1 to 7.
Supplemental Figure 1. MALDI-ISD mass spectrum of the beta chain of wild-type hemoglobin obtained from diluted whole blood in sDHB matrix. Inset shows an expanded view of m/z 3550-3620 showing the β_{c34} fragment ion at m/z 3584.98. Greater than 80% sequence coverage was obtained using BioTools 3.2 and BUPID Top-Down software and is illustrated on the sequence inset. Assignments correspond to values shown in Supplemental Table 1. * indicates matrix adducts.
Supplemental Figure 2. MALDI-ISD mass spectrum of the alpha chain of wild-type hemoglobin obtained from diluted whole blood in sDHB matrix. Greater than 80% sequence coverage was obtained using BioTools 3.2 and BUPID Top-Down software and is illustrated on the sequence inset. Assignments correspond to values shown in Supplemental Table 1. * indicates matrix adducts.
Supplemental Figure 3. Comparison of β_{c34} calculated isotope pattern (a) and the observed isotope pattern (b) at m/z 3584-3592 in the MALDI-ISD of diluted whole blood obtained with sDHB matrix.
Supplemental Figure 4. Expanded view of m/z 6900-6970 from the MALDI-ISD mass spectrum of (a) wild-type hemoglobin obtained from diluted whole blood in sDHB matrix, (b) sickle cell (β-E6V) heterozygote hemoglobin in sDHB matrix. Monoisotopic m/z values are shown here and the table inset.

<table>
<thead>
<tr>
<th>Hb</th>
<th>Ion</th>
<th>Measured m/z</th>
<th>Calculated m/z</th>
<th>Error (Da)</th>
<th>Δmass E6V</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>c64</td>
<td>6948.65</td>
<td>6948.60</td>
<td>-0.05</td>
<td>calc. 29.98</td>
</tr>
<tr>
<td>β(E6V)</td>
<td>c64</td>
<td>6918.61</td>
<td>6918.62</td>
<td>0.02</td>
<td>obs. 30.04</td>
</tr>
<tr>
<td>α</td>
<td>c65</td>
<td>6925.58</td>
<td>6925.54</td>
<td>-0.04</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Figure 5. Expanded view of \(m/z\) 4675-4770 from the MALDI-ISD mass spectrum of (a) wild-type and (b) sickle cell (\(\beta6\) Glu\(\rightarrow\)Val) heterozygote hemoglobin in sDHB matrix.
Supplemental Figure 6. Nanospray ESI Mass Spectrum of Hb Westmead (α122 His→Gln) obtained using a 12-T Qh/FT-ICR hybrid MS (SolariX, Bruker, Billerica, MA, USA). The spectra were acquired over the range m/z 172–3000 during a transient for which 1Mpoints provided a mass resolving power around 67,000 (at m/z 800), after FFT processing (total time per scan was 2 s). External calibration was carried out using sodium trifluoroacetate clusters.
Supplemental Figure 7. Expanded views from the MALDI-ISD mass spectra of normal hemoglobin obtained from diluted whole blood in sDHB matrix of (a) m/z 2965-3005 and (b) m/z 3685-3717, indicating regions (*) where potential diagnostic β_y^{28} and β_y^{34} ions for Hb D-Los Angeles (β_{121} Glu→Gln) would be observed.