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Abstract

Importance—Polycyclic aromatic hydrocarbons are common carcinogenic and neurotoxic urban 

air pollutants. Toxic exposures, including air pollution, are disproportionately high in communities 

of color and frequently co-occur with chronic economic deprivation.

Objectives—We examined whether the association between child IQ and prenatal exposure to 

polycyclic aromatic hydrocarbons differed between groups of children whose mothers reported 

high vs. low material hardship during their pregnancy and through child age 5. We tested 

statistical interactions between hardships and polycyclic aromatic hydrocarbons, as measured by 

DNA adducts in cord blood, to determine whether material hardship exacerbated the association 

between adducts and IQ scores.
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Design—Prospective cohort. Participants were recruited from 1998 to 2006 and followed from 

gestation through age 7 years.

Setting—Urban community (New York City)

Participants—A community-based sample of 276 minority urban youth

Exposure measure—Polycyclic aromatic hydrocarbon-DNA adducts in cord blood as an 

individual biomarker of prenatal polycyclic aromatic hydrocarbon exposure. Maternal material 

hardship self-reported prenatally and at multiple timepoints through early childhood.

Main outcome measure—Child IQ at 7 years assessed using the Wechsler Intelligence Scale 

for Children.

Results—Significant inverse effects of high cord PAH-DNA adducts on full scale IQ, perceptual 

reasoning and working memory scores were observed in the groups whose mothers reported a 

high level of material hardship during pregnancy or recurring high hardship into the child’s early 

years, and not in those without reported high hardship. Significant interactions were observed 

between high cord adducts and prenatal hardship on working memory scores (β=−8.07, 95% CI 

(−14.48, −1.66) and between high cord adducts and recurrent material hardship (β=−9.82, 95% CI 

(−16.22, −3.42).

Conclusion—The findings add to other evidence that socioeconomic disadvantage can increase 

the adverse effects of toxic physical “stressors” like air pollutants. Observed associations between 

high cord adducts and reduced IQ were significant only among the group of children whose 

mothers reported high material hardship. These results indicate the need for a multifaceted 

approach to prevention.
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1: Introduction

Exposure to polycyclic aromatic hydrocarbons (PAH) is prevalent in urban populations as a 

result of incomplete combustion of fossil fuels and other organic material. Specific sources 

of PAH include combustion of diesel, gasoline, coal, residential heating oil, tobacco smoke, 

and chargrilled or broiled foods1,2. There is growing evidence that exposures to ambient and 

indoor air pollutants have adverse effects on neurodevelopment and that such toxic 

exposures are disproportionately high in lower income communities of color3–6. These 

minority populations are also more likely to experience material hardship, an indicator of 

chronic economic stress, to live in lower quality housing, and to have inadequate educational 

and nutritional resources compared to higher income communities. Such socioeconomic 

stressors potentially compound or increase the effect of toxic environmental exposures7,8.

In addition to exerting epigenetic effects9, PAH bind covalently to DNA to form adducts, a 

widely used biomarker that reflects inter-individual variation in exposure, absorption, 

metabolic activation, and DNA repair, thereby providing an individual biologic dosimeter of 

an individual’s exposure to PAH. PAH-DNA adducts have previously associated with 

cancer in adults 10–12 and with adverse neurodevelopmental outcomes in children13–16.
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The fetus is considered particularly susceptible to the effects of PAH exposure due to slower 

clearance of chemicals, underdeveloped detoxification and repair mechanisms, high rate of 

metabolic activity, and rapid growth during fetal development17,18. PAH are readily 

transferred across the placenta and the fetal blood brain barrier (reviewed in19,20).

Here we tested the hypothesis that the adverse effect of prenatal exposure to PAH, measured 

by PAH-DNA adducts in cord blood, would be greater among children whose mothers 

experienced material hardship during pregnancy and in the children’s early years compared 

to children whose mothers did not experience material hardship. Material hardship is a 

measure used to assess an individual’s unmet basic needs in the areas of food, housing, and 

clothing21. As has been shown with lead22, even in the absence of significant main effects, 

combined exposures to environmental toxicants and social stress can have significant 

impacts on neurodevelopment and therefore are of concern23–25. We focused on prenatal 

PAH exposure because of the extensive structural and cellular-level changes that occur 

during the prenatal period and prior studies that have suggested that prenatal exposure to 

PAH adversely affects cognitive development26,27. We evaluated both prenatal material 

hardship and that experienced continuously from pregnancy through childhood because 

prior studies have reported adverse effects of economic disadvantage and stress experienced 

during both developmental periods 28,29.

2: Methods

2.1: The Columbia Center for Children’s Environmental Health (CCCEH) cohort study

A complete description of the CCCEH cohort and study design appears elsewhere30. Briefly, 

African-American and Dominican women who resided in Washington Heights, Harlem, or 

the South Bronx in New York City (NYC) were recruited into a prospective cohort study 

between 1998 and 2006 through the local prenatal care clinics. To reduce the potential for 

confounding, enrollment was restricted to women who were non-active cigarette smokers in 

the age range of 18–35 years; non-users of other tobacco products or illicit drugs; free of 

diabetes, hypertension, or known HIV; and had initiated prenatal care by the 20th week of 

pregnancy. The Institutional Review Board of the New York Presbyterian Medical Center 

approved the study. The mothers provided informed consent for themselves and their 

children and children provided assent at age 7.

2.2: Personal interviews, home caretaking environment, and maternal intelligence

2.2.1: Prenatal interview—A 45-minute questionnaire administered by a trained 

bilingual interviewer during the last trimester of pregnancy elicited demographic 

information, residential history, health and environmental data such as active smoking (to 

confirm non-active smoking status as reported on the screening questionnaire) and exposure 

to environmental tobacco smoke (ETS). In the cohort, self-reported ETS exposure was 

positively correlated with cotinine measured in cord blood (r=0.44, p-value<0.0001). The 

questionnaire also elicited information on dietary PAH (consumption of broiled, fried, 

grilled or smoked meat) and information related to income and education.
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2.2.2: Postnatal interviews and assessments—Postnatal interviews were 

administered in-person at 6 months and annually thereafter to determine changes in 

residence, ETS exposure, and health and environmental conditions. The PERI-D was also 

re-administered at those interviews31. At child age 3, the quality of the proximal caretaking 

environment was assessed using Caldwell and Bradley’s Home Observation for 

Measurement of the Environment (HOME)32. Maternal nonverbal intelligence was 

measured at child age 3 by the Test of Non-Verbal Intelligence-Third Edition (TONI-3)33, a 

15-minute, language-free measure of general intelligence, relatively stable and free of 

cultural bias.

2.3: Material hardship

A measure of material hardship21, assessing the level of unmet basic needs in the areas of 

food, housing, and clothing, was obtained prenatally and at child age 6 months, and 1, 2, 3, 

and 5 years by asking: “In the past year has there been a time when you: 1. couldn’t afford 

to buy food?; 2. couldn’t afford a place to stay?; 3. couldn’t afford gas/electricity?; or 4. 

couldn’t afford clothing?” Each answer was dichotomized (yes/no). High prenatal hardship 

was defined by a positive answer to at least one of the four questions at the prenatal 

assessment, and recurrent hardship by a positive response to at least one of the questions at ≥ 

50% of the prenatal period and postnatal visits.

2.4 Biomarker measurement and prenatal monitoring

At the time of delivery, umbilical cord blood and maternal blood were collected and 

transported within several hours of collection to the CCCEH Molecular Epidemiology 

Laboratory. The buffy coat, packed red blood cells, and plasma were separated and stored at 

−70°C. DNA adducts of the representative PAH, benzo[a]pyrene (B[a]P), were analyzed in 

extracted white blood cell DNA using a high performance chromatography (HPLC)/

fluorescence method which detects B[a]P tetraols18,34. The adducts were dichotomized into 

detectable/nondetectable (high/low) because 57% of cord blood DNA samples had levels 

below the limit of detection (0.25 adducts per 108 adducts). Some children lacked data on 

cord DNA adducts due to inadequate quantity or quality of DNA (n=145).

PAH metabolites were measured in spot urine collected at child age 5 at the Centers for 

Disease Control and Prevention (CDC) using automated liquid-liquid extraction and gas 

chromatography/isotope dilution high-resolution mass spectrometry, as previously 

described35–37. Although a short-term biomarker (half-life of 6–35 hours)38, in conditions of 

chronic exposure the metabolites are considered a useful measure of exposure to PAH from 

all exposure sources and pathways35,36. To adjust for urinary dilution of the samples, 

specific gravity (SG) measurements were obtained using a handheld refractometer (PAL-10-

S-P14643C0; TAGO, Bellevue, WA). Metabolite levels were adjusted for SG using the 

formula: freshweight metabolites for the subject*(mean SG-1)/(SG for that subject-1)39.

2.5: Outcomes

At child age 7 years, trained research workers administered the Wechsler Intelligence Scale 

for Children-Fourth Edition (WISC-IV), which consists of 15 subtests, 10 of which are core 

subtests used for the present study. Raw scores were converted into scaled scores based on a 
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metric with a mean of 10 and standard deviation of 3 specific for the child’s age group as 

described in the WISC-IV manual. The scaled scores were used to derive four composite 

scores (working memory, perceptual reasoning, processing speed, and verbal 

comprehension). These four indices were summed to derive the composite score for full 

scale IQ. The average expected performance on the full scale IQ score on the WISC-IV is 

100, with a standard deviation of 1540.

2.6: Statistical analysis

A total of 394 children had available data on cord adducts. Of these, 276 also had available 

data on material hardship and WISC outcomes. 27 subjects were missing data on one or 

more covariates identified as predictors of IQ in the present cohort (at p<0.1) or as reported 

in the literature. These covariates included maternal self-report of ETS exposure during 

pregnancy, maternal education (<high school; ≥high school), ethnicity, maternal intelligence 

(treated as a continuous variable), child sex, and quality of the early home caretaking 

environment assessed at child age 3 (treated as a continuous variable). We conducted 

multiple imputation for missing data on those covariates.

Adducts were treated as high/low (detectable/nondetectable). Stratified analyses assessed the 

effect of high cord adducts in the different strata of material hardship (high vs. low prenatal 

and recurrent vs. non-recurrent hardship, respectively). To determine if the effects of high 

cord adducts in different strata of material hardship are statistically different or not, we 

tested statistical interactions, a product term between adducts and material hardship 

(prenatal or recurrent), in a linear regression model, with the terms for adducts, material 

hardship and key covariates regressed on each WISC outcome. The interaction term betas 

and 95% confidence intervals (CI) were then examined to determine whether the 

associations between PAH and IQ within the low and high hardship strata were statistically 

different.

In separate models with a smaller number of subjects (n=230), we adjusted for postnatal 

PAH exposure, using the SG-adjusted level of PAH metabolites in child urine at age 5. In a 

further analyses (n=226), we adjusted for levels of the pesticide chlorpyrifos (CPF) and lead 

(n=156) in cord blood because these toxicants have been associated with lower working 

memory scores in our cohort41. Our analyses involved multiple comparisons; however to 

reduce the possibility of making a type II error42 we did not perform Bonferroni adjustment.

As in previous analyses43, to account for potential bias due to selection and loss to follow 

up, in post-hoc sensitivity analyses, we applied the inverse probability weighting (IPW) 

technique44–46. As before43, to model probability of staying in the study for each subject, we 

used a logistic model that included baseline variables for race/ethnicity, receipt of public 

assistance during pregnancy, high school education, college education, reported satisfaction 

with living conditions, cord adduct level, neighborhood poverty rate, Spanish language 

linguistic isolation, and indicator variables for missing data on these variables. Note that the 

missing data on covariates in the 27 subjects were first filled in with single imputation.
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3: Results

Socio-demographic and exposure characteristics of the sample included in the analysis are 

presented in Table 1. Within our fully enrolled cohort, there were 394 women with available 

cord adduct data. A consort diagram showing how we arrived at our final analyzed sample is 

shown in Figure 1. There were no significant differences between the children included in 

the analysis and those not included due to missing WISC outcome or cord adduct data 

(n=118), except that there was a higher percentage of African Americans in the included 

group (38% vs. 26%) (Supplemental Table S1). In the sample analyzed, the correlation 

between prenatal material hardship and cord adducts was not significant (r=−0.03, p=0.67) 

and high cord adducts was not correlated with PAH metabolites at age 5 years (r=0.04, 

p=0.52) (Supplemental Table S2).

As we had previously hypothesized, stratified analyses showed that the association between 

PAH-DNA adducts in cord blood and IQ measures were significant only among the children 

whose mothers reported high prenatal or recurrent material hardship (Table 2). Among the 

group with high prenatal hardship, children who had high levels of adducts in cord blood 

had a 5.81 point lower full scale IQ score, a 5.44 point lower perceptual reasoning score and 

a 6.67 point lower working memory score compared to children whose cord adducts were 

low (Table 2). The same significant relationships between adducts and IQ were not observed 

in the low material hardship group.

Similarly, after stratifying on recurrent hardship, adducts were significantly associated with 

full scale IQ, perceptual reasoning and working memory only within the high hardship 

group (Table 2, Figure 2). Among the group with recurrent hardship, children who had high 

levels of adducts in cord blood had a 6.63 point lower full scale IQ score, a 5.66 point lower 

perceptual reasoning score and a 8.06 point lower working memory score compared to 

children with low cord adducts. Statistically significant interactions between both prenatal 

(β=−8.07, 95% CI (−14.48, −1.66)) and recurrent (β=−9.82, 95% CI (−16.22,−3.42)) 

material hardship and cord adducts were observed on working memory scores (Table 2). 

Regarding the overall main effects of high cord adducts on cognitive outcomes, associations 

were uniformly inverse as hypothesized and significant for full scale IQ (β=−3.45, 95% CI 

(−6.35, −0.55)) and processing speed (β=−3.72, 95% CI (−7.28, −0.17)) and borderline for 

perceptual reasoning (β=−3.02, 95% CI (−6.30, 0.26)) (data not shown). We also conducted 

the stratified and interaction analyses in the subset with postnatal PAH exposure data 

available (n=230) (Supplemental Table S3). There was no difference in results before and 

after adjusting for postnatal PAH exposure, and therefore we did not include this variable in 

our final model.

In the subset with available cord plasma CPF data (n=226), CPF was significantly associated 

with working memory scores, after adjusting for cord adducts and stratified on prenatal and 

recurrent material hardship (data not shown). When the interaction model for cord adducts 

and recurrent hardship was adjusted for CPF, the interaction on working memory remained 

significant (β= −10.93, 95% CI (−17.94, −3.93)) and the interaction on full scale IQ and 

verbal comprehension became significant (β= −6.48, 95% CI (−12.76, −0.20) and β=−6.19, 

95% CI (−10.83, −1.57), respectively). The same interactions on working memory and full 
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scale IQ were seen when considering prenatal hardship (β= −13.01, 95% CI (−19.97, −6.04) 

and β=−7.23, 95% CI (−13.52, −0.94), respectively) (Supplemental Table S4). Cord adduct 

and CPF levels were not significantly correlated (r=−0.02, p=0.81); neither were cord adduct 

and lead levels (r=−0.06, p=0.48). Furthermore, after adjusting for prenatal lead exposure in 

a smaller subsample with available data (n=156), high cord adducts were significantly 

associated with working memory scores in both the high prenatal (β=−10.45, 95% CI 

(−16.87, −4.02) and recurrent material hardship (β=−9.46, 95% CI (−16.08, −2.83) groups. 

The corresponding interaction terms were also significant (Supplemental Table S5).

After repeating all analyses with IPW, the direction and magnitude of associations did not 

materially change, indicating that the results are not influenced by sample selection and loss 

to follow-up (Supplemental Table S6).

4: Discussion

This is the first report of an interaction between chronic socioeconomic stress and prenatal 

exposure to PAH, represented by PAH-DNA adducts in cord blood, on children’s IQ. Cord 

PAH-DNA adducts are a direct measure of the individual fetal dose of PAH integrating 

exposure over the past 3–4 months47.

The findings are of concern because, as has been shown with lead, even a modest decrease 

in IQ can impact lifetime earnings48,49. They are also consistent with studies showing 

modification of the neurotoxic effect of lead by social class22.

PAH are common urban pollutants and include known carcinogens and neurotoxicants such 

as B[a]P. B[a]P, considered a representative PAH, is highly correlated with the other 7 

genotoxic PAH measured in prenatal air (r = 0.80–0.96, p = 0.001 except for 

dibenz[a,h]anthracene, r = 0.53, p < 0.001)14. Although PAH is ubiquitous in the urban 

environment, low-income communities are disproportionately exposed due to greater siting 

of heavily trafficked roadways, bus and truck depots, power plants and industrial boilers, 

and the higher prevalence of smokers in low-income households8,50.

This report adds to the growing literature on the vulnerability of the developing fetus and 

young child to the toxic effects of environmental pollutants17,18 as well as to socioeconomic 

disadvantage 51–53 (for review see54). Additional studies have observed similar decreases in 

IQ score as measured by the WISC-IV in response to environmental toxicants experienced 

prenatally and during early childhood as our present study55–58. Economic deprivation and 

related stress early in life have been linked to behavioral problems and lower IQ scores in 

children59. Cumulative poverty and hardship in the first year of life were associated with 

negative effects on cognitive function in childhood28.

The observed interaction between PAH (cord adducts) and material hardship is consistent 

with other reports that adverse social conditions can modify the neurotoxicity of 

environmental pollutants such as lead, traffic-related pollutants, and ETS22,55,60–62 (see63 

for review).
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A number of prior reports in other populations have indicated adverse neurodevelopmental 

effects of air pollution26,27,64,65. In the present NYC cohort, prenatal exposure to PAH, as 

measured by 48-hour prenatal air monitoring, was associated with delayed mental 

development at age 3 years30 and was associated with lower intelligence at age 5 years in 

both the NYC cohort and in a parallel Polish cohort26,27. In those reports, the association 

with PAH-DNA adducts was not examined.

Mechanisms underlying interactions between toxic pollutants and psychosocial factors are 

not well understood. However, chronic psychosocial stress is known to increase allostatic 

load that can impair individual resilience and ability to recover from toxic insults by 

interfering with normal functioning of protective toxicokinetic and toxicodynamic 

processes, resulting in elevated inflammatory tone63,66,67. Production of inflammatory 

mediators is also stimulated by physical toxicants68,69. Thus the two types of exposures 

could potentiate each other through common physiological pathways such as 

inflammation63,68,70,71. Research on the combined effect of maternal stress during 

pregnancy and prenatal air pollution in mice showed that these stressors act synergistically 

to induce neuroinflammation, leading to future neurobehavioral disorders29.

With respect to the harmful effects of prenatal PAH exposure, a number of additional 

pathways have been suggested including endocrine disruption72–74, binding to receptors for 

placental growth factors resulting in decreased exchange of oxygen and nutrients75, binding 

to the human Ah receptor to induce P450 enzymes76, DNA damage resulting in activation of 

apoptotic pathways77–79, oxidative stress due to inhibition of the brain antioxidant 

scavenging system80, epigenetic alterations affecting gene expression81,82 and/or altered 

expression of nuclear transcription factors that mediate the onset of neuronal cell 

differentiation19.

Our findings are consistent with those from other animal and human studies. Although the 

exposure in experimental laboratory studies is considerably higher than those in the NYC 

cohort, impaired memory has been observed in animals exposed gestationally to PAH at 

doses below those causing overt toxicological effects83,84. Differences in the medial 

temporal/memory composite have been significantly related to children’s socioeconomic 

status85.

Regarding the interpretation of our results, it is possible that PAH are equally toxic under 

conditions of low and high hardship, but that low hardship families have unmeasured 

resources positively affecting the health and development of children and buffering the 

adverse impact of PAH exposure86. Furthermore, those individuals experience material 

hardship may also have had a poor prenatal diet87,88 and exposure to other chemical 

toxicants, such as lead57,89, ETS55 and other air pollutants90–92, that also may account for 

the lower IQ seen in the children.

In addition, it is possible that the WISC-IV scores at age 7 are capturing manifestations 

other than child IQ. For example, Oliveras-Rentas et al., found that among a sample of high-

functioning children with autism-spectrum disorder, scores on the WISC-IV were correlated 

with adaptive behavior as measured on the Vineland instrument and autism spectrum 
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symptomology scores as measured on the Autism Diagnostic Observation Schedule 

(ADOS). This study did not see a significant correlation between WISC-IV scores and 

ADHD symptomology93. However, an additional study investigated clusters of IQ profiles 

as defined by the WISC-IV and found an association between processing speed and 

inattention among children diagnosed with ADHD. They concluded that WISC-IV scores 

may be helpful in predicting symptomology of children with ADHD94. In particular, 

working memory scores on the WISC may be affected by clinical behavior problems40.

We acknowledge a number of additional limitations. Although we have adjusted for the 

possible confounding effects of ETS, there is always the possibility that some residual 

confounding remains; and we did not have data on a measure of psychological stress. In 

addition, we excluded active smokers, illicit drug users, and women with preexisting 

disease, thereby limiting generalizability.

The strengths of the study include the longitudinal design and ability to account for a 

number of factors other than PAH exposure that are known to affect child neurobehavioral 

development via available biomarker and questionnaire data.

There is growing recognition of the continuing need to document interactions between 

adverse social conditions/psychosocial stressors and environmental toxicants and to 

understand the mechanisms involved for effective intervention63,95. The present results 

suggest the need for a multifaceted approach to reduce PAH exposure and alleviate material 

hardship in order to protect the developing fetus and young child. The approach could 

combine screening women early in pregnancy to identify those needing material support and 

policy interventions to reduce air pollution exposure in urban areas, especially low-income 

communities.

5. Conclusion

This study provides evidence that material hardship influences the effect of prenatal 

exposure to environmental PAH, measured by PAH-DNA adducts in cord blood, on child 

IQ. The associations between PAH on full scale IQ and working memory were seen mainly 

among the group of children whose mothers experienced material hardship during 

pregnancy and in the children’s early years.

PAH are widespread in urban environments worldwide, largely as a result of fossil fuel 

combustion. Their concentrations can be reduced using currently available pollution 

controls, greater energy efficiency, alternative energy sources, and regulatory intervention to 

remove highly polluting sources. These results add to prior data linking PAH to cognitive 

and behavioral problems in children and suggest the need for a multifaceted approach to 

prevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• PAH-DNA adducts in cord blood provided an individual measure of prenatal 

exposure.

• Material hardship in pregnancy and child’s early life proxied economic 

deprivation.

• Adverse effects on child IQ at age 7 were seen only among mothers with 

hardship.

• Interaction between high adducts and hardship on working memory was 

significant.

• These results indicate the need for a multifaceted approach to prevention.
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Figure 1. 
Subject selection for present analysis
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Figure 2. 
Full Scale IQ and Working Memory Scores in the low and high cord PAH-DNA adduct 

groups stratified by recurrent hardship (n=276)
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Table 1

Socio-demographic and exposure characteristics of subjects (n=276)a

Variable Mean SD range

Cord blood PAH-DNA adducts (% detectable) 43.8

PAH Metabolites at Age 5 [% > median]b 47.0

Sex (% female) 53.6

Maternal ETS (% reporting smoker in the home) 33.3

WISC Full Scale 98.6 13.2 (48, 133)

WISC Verbal Comprehension 96.3 12.2 (45, 134)

WISC Processing Speed 101.1 15.2 (62, 138)

WISC Perceptual Reasoning 100.8 14.3 (63, 137)

WISC Working Memory 97.4 14.2 (54, 135)

Maternal education (% ≥ high school education) 63.4

Ethnicity (% AA) 38.0

Maternal IQ (TONI) 20.7 8.7 (0, 43)

Prenatal hardship (% ≥1 hardships) 42.8

Recurrent up to 5 years (% ≥ 1 hardship, 50% of the time) 39.9

HOME inventory 39.8 6.0 (22, 52)

a
Subjects have data on cord adducts and IQ test results at age 7.

b
Variable dichotomized at the median level for the entire population (8223.41 ng/m3)
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