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Abstract

Exposure to organophosphate (OP) insecticides may alter reproductive hormone levels in men and 

increase the risk for poor reductive health and other adverse health outcomes. However, relevant 

epidemiology studies in men are limited. We evaluated urinary concentrations of OP metabolites 

(3,5,6-trichloro-2-pyridinol and six dialkyl phosphates) in relation to serum concentrations of 

testosterone (T) and estradiol among 356 men aged 20–55 years old from the U.S. National Health 

and Nutrition Examination Survey. Biomarkers were detected in greater than 50% of the samples, 

except for diethyldithiophosphate, dimethylphosphate, and dimethyldithiophosphate. In adjusted 

regression models, we observed a statistically significant inverse relationship between diethyl 

phosphate (DEP) and T when DEP was modeled as either a continuous or categorical variable. 

These findings add to the limited evidence that exposure to certain OP insecticides is linked to 

altered T in men, which may have important implications for male health.

Keywords

Biomarkers; epidemiology; exposure; testosterone; pesticides

1. INTRODUCTION

Organophosphate (OP) insecticides are a diverse group of pesticides that are characterized 

by their potent acetylcholinesterase inhibitor activity [1]. Although residential uses of OP 

insecticides have been largely phased out in the U.S. due in part to regulatory efforts [1], 

they are still widely used for insect control on food crops and in certain public health 

applications (e.g., malathion for mosquito control) [2]. The use of OP insecticides in the 
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U.S. exceeds 30 million pounds on an annual basis, and accounts for approximately one-

third of all insecticides used in the U.S. [3]. Globally, the demand for OP insecticides is 

considerable, accounting for nearly 30% of the market share of all insecticides [4].

OP insecticides are notorious for their acute toxicity resulting from human poisonings, 

which have been reported in scenarios involving agricultural use, unintentional exposure, 

suicide, and, to a much lesser extent, homicide [5]. Such exposures lead to the 

overstimulation of the muscarinic and nicotinic receptors [6], and often result in death if a 

diagnosis is not made in a timely manner or if not managed properly [5]. In comparison, 

much less is known about the toxicity of chronic, low-level exposures to OP insecticides in 

humans [6]. There is growing concern that non-acute exposures may adversely impact 

human health as epidemiology studies have linked exposures to OP insecticides to 

detrimental child neurodevelopment [7–10], decreased gestational age [11–13], reduced 

birth weight [12], reduced semen quality [14], wheeze [15], and lung cancer [16].

Altered serum reproductive hormone levels have also been reported in epidemiology studies 

of OP insecticide exposure conducted in men [6,17,18]. For example, serum testosterone (T) 

levels were inversely related to urinary biomarkers of OP insecticide exposure in cohorts of 

men from a U.S. fertility clinic [17] and male floriculture workers from Mexico [6]. At the 

population level where exposure to OP insecticides is widespread [2], reductions in T may 

have important public health implications because low T concentrations may adversely 

impact semen quality parameters and resultant fertility [19]. Low T has also been linked to 

various additional health endpoints, including metabolic syndrome [20], diabetes [21], 

cardiovascular disease [22], fractures [23,24], neurodegenerative disorder [25,26], and 

mortality [27–29]. In addition to serum T, exposure to OP insecticides has been associated 

with reduced serum estradiol (E2) among men from the same U.S. fertility cohort [18], 

suggesting that population-wide OP exposures may impact male reproductive health through 

altered T, E2, or both. A decrease in serum E2 may also increase one’s risk for prostate 

cancer as E2 may play a protective role in prostate cancer etiology [18]. Experimental 

animal studies suggest that OP insecticides may be hormonally-active [17], which supports 

the findings of altered T, E2, and other serum hormone levels in humans following exposure 

to OP insecticides.

The present study was designed to the examine relationships between levels of urinary 

biomarkers of OP insecticide exposure and serum T or E2 in men 20–55 years old from the 

U.S. population. This is the first analysis of its kind using data from the U.S. National 

Health and Nutrition Examination Survey (NHANES).

2. MATERIALS AND METHODS

2.1 Study population

This analysis utilized publicly-available data that was derived from NHANES 1999–2002, 

the survey years in which data on the exposure biomarkers and outcome measures of interest 

overlapped. NHANES is a cross-sectional survey that is administered by the National Center 

for Health Statistics (NCHS) of the Centers for Disease Control and Prevention (CDC) that 

collects nationally representative data on the health and nutritional status of non-
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institutionalized civilian residents, and conducts more detailed laboratory analyses on a 

subset of the participants [30]. We analyzed data from a subset of men that were 20–55 

years old (n=2809). Men with missing data on the urinary exposure biomarkers of interest, 

serum T or E2, serum sex hormone binding globulin (SHBG), serum cotinine, urinary 

creatinine, body mass index (BMI), race/ethnicity, or education were excluded from the 

current analysis (n=2453), resulting in a final sample size of 356 men. The large number of 

men that were excluded had to do with the fact that only a subset was measured for the 

exposure biomarkers and hormones of interest. Missing data on the other variables was 

much less prevalent, accounting for only 0–12% of the eligible subjects. NHANES received 

approval from the NCHS Ethics Review Board, and informed consent was obtained for all 

participants.

2.2 Demographic data and body measurements

Information on race/ethnicity and education was obtained from the men in their homes by a 

Computer-Assisted Personal Interviewing system [31]. Height and weight were collected in 

a Mobile Examination Center (MEC) by trained technicians with the assistance of a recorder 

during body measures [32]. BMI was calculated by CDC as weight in kilograms divided by 

height in meters squared [32].

2.3 Laboratory measurements

Whole venous blood and urine were collected from participants at the MEC, which were 

then processed, stored, and shipped to laboratories at either the CDC or the University of 

Minnesota (urinary creatinine only) for analysis [33]. Samples were analyzed for urinary OP 

insecticide metabolites and creatinine, and serum T (total), E2, SHBG, and cotinine. We 

focused our current analysis on a urinary metabolite of chlorpyrifos and chlorpyrifos-methyl 

[3,5,6-trichloro-2-pyridinol (TCPY)], and six non-specific urinary metabolites 

[diethylphosphate (DEP), diethylthiophosphate (DETP), diethyldithiophosphate (DEDTP), 

dimethylphosphate (DMP), dimethylthiophosphate (DMTP), and dimethyldithiophosphate 

(DMDTP)] to be consistent with previous epidemiology studies conducted in men focusing 

on the potential relationship between urinary OP insecticide metabolites and serum T and 

serum E2 [6,17,18]. Urinary OP insecticide metabolites and urinary creatinine were 

measured using gas chromatography-tandem mass spectrometry [34] and the Jaffe rate 

reaction method [33], respectively. Serum T, E2, and SHBG were measured using an 

immunoassay method [35], and serum cotinine was measured using isotope dilution-high 

performance liquid chromatography/atmospheric pressure chemical ionization-tandem mass 

spectrometry [36]. Urinary metabolite concentrations below the limit of detection (LOD) 

were assigned a value of LOD divided by the square root of 2. LODs by NHANES cycle 

(1999–2000 and 2001–2002) are reported in Table 2.

2.4 Statistical analysis

Statistical analysis was performed using SAS version 9.3 for Windows (SAS Institute, Cary, 

NC, USA). Descriptive statistics of participant demographics and concentrations of the 

biomarkers were calculated.
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We chose to conduct regression analyses for urinary biomarkers detected in >50% of the 

samples (i.e., DEP, DETP, DMTP, and TCPY). The associations were initially assessed 

using simple linear regression in unadjusted models. These same associations were then 

examined using multiple linear regression in statistical models that were adjusted for the 

following variables: age, BMI, race/ethnicity, education, serum SHBG, and serum cotinine. 

These additional variables were considered and included in final models based on methods 

employed in previous studies [17,18], and because when most were individually added to 

unadjusted models, the beta estimate for the exposure biomarker changed by >10%. Urinary 

creatinine concentration was also added to adjusted models as a covariate to account for 

variability in urinary output [37]. In both unadjusted and adjusted models, serum T and 

serum E2 were log-transformed because they were right-skewed and more closely followed 

a log-normal distribution. All independent variables were modeled as continuous variables, 

except for race/ethnicity and education, which were both modeled as categorical variables. 

In particular, race was categorized as Mexican American, other Hispanic, non-Hispanic 

Black, non-Hispanic White, and other/multi-racial. Education was categorized as less than 

9th grade, 9th–11th grade, high school graduate or equivalent, some college or associate 

degree, and college graduate or greater. As a sensitivity analysis, we also ran these models 

where the exposure biomarker was log-transformed to minimize the potential for 

associations that may have been driven by influential or extreme values. In addition, we 

assessed non-linear relationships by regressing serum hormones on categories of exposure 

biomarkers. We chose to categorize bins of exposure as less than 50th percentile, 50th–75th 

percentile, 75th–90th percentile, and greater than 90th percentile based on the percentage of 

non-detects. We also chose not to use sampling weights in our analysis because when 

variables employed in the calculation of sampling weights are also included in statistical 

models, such as race/ethnicity and age groups [38], a weighted analysis can decrease the 

precision of effect estimates [39]. This approach has been employed in other recent studies 

using data from NHANES [40,41]. To facilitate interpretation of the beta coefficients, when 

biomarker concentration was modeled as a continuous variable our results were expressed as 

percent change in serum T or E2 concentration associated with a doubling (i.e., 100% 

increase) in urinary biomarker concentration (equation: % change = [(exp(2*beta)) − 

1]*100). When biomarker concentration was modeled as a categorical variable out results 

were expressed as percent change in serum T or E2 associated with each bin of exposure 

relative to the referent group (equation: % change = [(exp(beta)) − 1]*100).

3. RESULTS

Table 1 shows the demographic characteristics of the subset of men (n=356) from NHANES 

1999–2002 included in our study. Overall, these men had a median age of 37 years, were 

predominantly overweight (67%), moderately educated (some college/associate degree, 

34%), and non-Hispanic White (44%), and had no to little secondhand tobacco smoke 

exposure (59%). The breakdown of these characteristics was similar to those of the overall 

sample (n=2809) of 20–55 year-old men (data not shown).

Table 2 presents the distributions of the urinary biomarker concentrations. All urinary 

biomarkers were detected in greater than 50% of the samples, except for DEDTP (29%), 

DMP (48%), and DMDTP (33%).
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Table 3 shows the percent change in T or E2 associated with a doubling (100 % increase) in 

biomarker concentration where the biomarker was modeled as a continuous variable. In 

unadjusted models, there was a statistically significant inverse association between DEP and 

T (β: −2.4%; 95% confidence interval (CI): −3.7, −1.2%), and a suggestively significant 

positive association between TCPY and E2 (β: 1.8%; 95% CI: −0.2, 3.8). When the 

covariates were included in adjusted models, the inverse association between DEP and T 

remained statistically significant as in the unadjusted model, but a suggestive relationship 

between TCPY and E2 was no longer observed. Similar findings were also observed when 

the biomarker was log-transformed (data not shown).

As shown in Figure 1, there appears to be a monotonic but non-linear inverse relationship 

between DEP and T (trend p=0.01). A similar relationship was also noted in the unadjusted 

model between DEP and T (data not shown). Using the 50th percentile as the reference, on 

average men in this age range are expected to have a decrement of −3.2% (95% CI: −11.1, 

5.3%), −2.5% (95% CI: −12.0, 8.1%), or −17.1% (95% CI: −26.7, −6.3%) in T 

concentration if their DEP concentration is in the 50th–75th, in the 75th–90th, or greater than 

the 90th percentile, respectively. Like the continuous measures analysis in Table 3, there 

were no statistically significant associations between DETP, DMTP, or TCPY and T or E2 

in both unadjusted and adjusted regression models when the biomarker was modeled as a 

categorical variable (data not shown).

4. DISCUSSION

In the present study, we examined the potential association between urinary biomarkers of 

OP insecticide exposure and serum reproductive hormones in men of reproductive age from 

NHANES. We observed a statistically significant inverse relationship between DEP and T in 

adjusted models when exposure was modeled as either a continuous or a categorical 

variable. Our findings suggest that the relationship may occur primarily at the high end of 

the exposure distribution. Since DEP is a common metabolite of several OP insecticides, 

exposure to one or more OP insecticides may increase a man’s risk for fertility issues and 

also a variety of other adverse health endpoints through altered T. Aside from chlorpyrifos, 

one the parent compounds of TCPY, there are 9 other OP insecticides that are metabolized 

to DEP [42]. However, for the men in our analysis, chlorpyrifos does not appear to be the 

OP insecticide driving this relationship as TCPY was not associated with T and TCPY was 

not strongly correlated with DEP (Spearman’s rho: 0.29). This analysis represents a unique 

contribution to the state-of-the-science on this matter as it is the first of its kind to use data 

from NHANES.

Men in our study had similar urinary concentrations of TCPY detected at comparable 

frequencies relative to those presented in a study of men from a U.S. fertility clinic 

(uncorrected geometric mean: 1.7 ng/ml vs. 2.1 ng/ml; detection: 83% vs. 95%) [17,18,43]. 

In that population, statistically significant inverse dose-dependent relationships between 

TCPY and T [17] and TCPY and E2 [18] were observed, which is contrary to our findings 

of no observed association for TCPY and T or E2. Akin to Aguilar-Garduño et al. [6], which 

focused on exposures to OP insecticides in Mexican male floriculture workers, detection 

frequencies of urinary concentrations of dimethyl moieties (median: 54%) were higher 
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relative to diethyl moieties (median: 48%) in our analysis. In addition, the authors observed 

a statistically significant inverse relationship between sum DEPs and T. The observed 

inverse association between DEP and T in our study, and similar findings of other studies, 

could be the result of a dose-dependent inhibition of cholinesterase in the hypothalamus, 

which, in turn, could alter the rate of gonadotropin-releasing hormone (GnRH) secretion [17, 

44,45]. The neuroendocrine axis and specifically GnRh neurons in the brain could also 

mediate the effects of reproductive and neurologic toxicants, such as OP insecticides 

[17,46].

Aside from T and E2, several epidemiology studies involving cohorts of men from the U.S. 

[43], Mexico [6,47,48], Venezuela [49], and China [50] have reported altered levels of 

thyroid stimulating hormone, follicle stimulating hormone, and/or luteinizing hormone in 

relation to exposure to OP insecticides, which provides additional support for the potential 

endocrine disrupting capabilities of this class of insecticide. Studies conducted in rodent 

species have also demonstrated decreases in T following exposure to the OP insecticides 

chlorpyrifos [51], methamidophos [52], and propetamphos [53], corroborating our findings. 

In addition, these laboratory studies observed reductions in testicular size and seminal 

vesicle weight, decreases in sperm count and motility, and increases in sperm morphological 

abnormalities, lending support for the potential role of OP insecticides as male reproductive 

toxicants.

This analysis represents a unique contribution to the state-of-the-science on the potential 

link between exposure to OP insecticides and male reproductive hormones as it is the first of 

its kind to use data from NHANES. While our analysis had a reasonably large sample size 

(n=356), it was not without limitations. The cross-sectional study design limited conclusions 

of causality due to temporal ambiguity. Nowadays, liquid chromatography-tandem mass 

spectrometry is available for measuring serum levels of reproductive hormones, which can 

provide greater sensitivity than the immunoassays used by CDC during the 1999–2002 

cycles [54]. In addition, a single measurement of biomarkers of OP insecticides may lead to 

appreciable exposure measurement error [55], which, if non-differential, would have biased 

our effect estimates towards the null and underestimated the true associations.

5. CONCLUSIONS

In conclusion, DEP was associated with reduced T in men of reproductive age from 

NHANES. Because altered T has been linked to a wide variety of adverse health effects, 

additional epidemiology studies are needed in other populations from the U.S. and other 

countries to confirm the results of our analysis.
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ABBREVIATIONS

BMI body mass index

CDC Centers for Disease Control and Prevention

CI confidence interval

DEP diethylphosphate

DEDTP diethyldithiophosphate

DETP diethylthiophosphate

DMP dimethylphosphate

DMDTP dimethyldithiophosphate

DMTP dimethylthiophosphate

E2 estradiol

GnRH gonadotropin-releasing hormone

LOD limit of detection

NCHS National Center for Health Statistics

NHANES National Health and Nutrition Examination Survey

OP organophosphate

SHBG sex hormone binding globulin

T testosterone

TCPY 3,5,6-trichloro-2-pyridinol
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HIGHLIGHTS

• We studied 7 urinary OP insecticide metabolites in men 20–55 years old from 

NHANES

• Biomarkers were detected in >50% of the samples, except for DEDTP, DMP, 

and DMDTP

• There was a statistically significant inverse association between DEP and T

• Exposure to certain OP insecticides may have important implications for male 

health

Omoike et al. Page 11

Reprod Toxicol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Percent change in serum T concentration associated with increasing urinary DEP 

concentration in men aged 20–55 years from NHANES 1999–2002 (n=356). Results were 

adjusted for age, BMI, serum cotinine, urinary creatinine, serum SHBG, race/ethnicity, and 

education.
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Table 1

Characteristics of men aged 20–55 years from NHANES 1999–2002 (n=356)

Variable Median (IQR)/n (%)

Age (years) 37 (29, 46)

BMI (kg/m2)a

 <18.50 (underweight) 5 (1)

 18.50–24.99 (normal weight) 114 (32)

 ≥25.00 (overweight) 237 (67)

Education

 <9th grade 43 (12)

 9th–11th grade 58 (16)

 High school grad/GED 67 (19)

 Some college/AA degree 120 (34)

 College graduate or greater 68 (19)

Race/ethnicity

 Mexican American 88 (25)

 Other Hispanic 19 (5)

 Non-Hispanic Black 75 (21)

 Non-Hispanic White 158 (44)

 Other/multi-racial 16 (5)

Serum cotinine (ng/ml)b

 <1 (no or little STS exposure) 209 (59)

 1–10 (high STS exposure) 25 (7)

 >10 (likely smoker) 122 (34)

Abbreviations: AA, associate degree; BMI, body mass index; GED, general education development; IQR, interquartile range; STS, secondhand 
tobacco smoke.

a
Categories defined based on World Health Organization BMI classification criteria [56].

b
Categories defined based on Hukkanen et al. [57].

Reprod Toxicol. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Omoike et al. Page 14

T
ab

le
 2

U
ri

na
ry

 c
on

ce
nt

ra
tio

ns
 o

f 
or

ga
no

ph
os

ph
at

e 
in

se
ct

ic
id

e 
m

et
ab

ol
ite

s 
(n

g/
m

l, 
un

co
rr

ec
te

d 
fo

r 
ur

in
ar

y 
cr

ea
tin

in
e)

 in
 m

en
 a

ge
d 

20
–5

5 
ye

ar
s 

fr
om

 N
H

A
N

E
S 

19
99

–2
00

2 
(n

=
35

6)

B
io

m
ar

ke
r

L
O

D
 b

y 
cy

cl
e

n 
(%

) 
≥L

O
D

G
M

P
er

ce
nt

ile
s

99
–0

0
01

–0
2

10
th

25
th

50
th

75
th

90
th

95
th

M
ax

D
E

P
0.

2
0.

2
20

4 
(5

7)
0.

8
<

L
O

D
<

L
O

D
0.

8
3.

5
8.

4
15

.0
51

.9

D
E

T
P

0.
09

0.
1

22
6 

(6
4)

0.
4

<
L

O
D

<
L

O
D

0.
5

1.
2

2.
3

3.
2

26
.4

D
E

D
T

P
0.

05
0.

1
10

4 
(2

9)
0.

1
<

L
O

D
<

L
O

D
<

L
O

D
0.

1
0.

6
0.

7
8.

4

D
M

P
0.

58
0.

5
17

0(
48

)
1.

0
<

L
O

D
<

L
O

D
<

L
O

D
2.

7
7.

1
12

.3
67

.0

D
M

T
P

0.
18

0.
4

18
7 

(5
3)

1.
3

<
L

O
D

<
L

O
D

0.
6

6.
0

29
.5

40
.8

90
0

D
M

D
T

P
0.

08
0.

1
11

8 
(3

3)
0.

2
<

L
O

D
<

L
O

D
<

L
O

D
0.

9
3.

0
7.

8
33

.0

T
C

PY
0.

4
0.

4
29

6 
(8

3)
1.

7
<

L
O

D
0.

9
1.

9
3.

8
7.

3
11

.1
42

.0

A
bb

re
vi

at
io

ns
: G

M
, g

eo
m

et
ri

c 
m

ea
n;

 L
O

D
, l

im
it 

of
 d

et
ec

tio
n.

Reprod Toxicol. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Omoike et al. Page 15

T
ab

le
 3

Pe
rc

en
t c

ha
ng

e 
in

 s
er

um
 h

or
m

on
e 

co
nc

en
tr

at
io

n 
as

so
ci

at
ed

 w
ith

 a
 d

ou
bl

in
g 

(1
00

%
 in

cr
ea

se
) 

in
 u

ri
na

ry
 o

rg
an

op
ho

sp
ha

te
 in

se
ct

ic
id

e 
m

et
ab

ol
ite

 

co
nc

en
tr

at
io

n 
in

 m
en

 a
ge

d 
20

–5
5 

ye
ar

s 
fr

om
 N

H
A

N
E

S 
19

99
–2

00
2 

(n
=

35
6)

B
io

m
ar

ke
r

T
 [

%
 c

ha
ng

e 
(9

5%
 C

I)
]

E
2 

[%
 c

ha
ng

e 
(9

5%
 C

I)
]

U
na

dj
us

te
d

A
dj

us
te

da
U

na
dj

us
te

d
A

dj
us

te
da

D
E

P
−

2.
4 

(−
3.

7,
 −

1.
2)

**
−

2.
5 

(−
3.

5,
 −

1.
4)

**
0.

1 
(−

1.
4,

 1
.7

)
−

0.
2 

(−
1.

7,
 1

.4
)

D
E

T
P

0.
4 

(−
3.

6,
 4

.6
)

1.
3 

(−
2.

0,
 4

.6
)

1.
3 

(−
3.

5,
 6

.3
)

1.
4 

(−
3.

2,
 6

.2
)

D
M

T
P

−
0.

1 
(−

0.
2,

 0
.1

)
−

0.
02

 (
−

0.
2,

 0
.1

)
−

0.
1 

(−
0.

3,
 0

.1
)

−
0.

1 
(−

0.
3,

 0
.1

)

T
C

PY
0.

2 
(−

1.
4,

 1
.9

)
0.

3 
(−

1.
1,

 1
.7

)
1.

8 
(−

0.
2,

 3
.8

)*
1.

5 
(−

0.
5,

 3
.5

)

A
bb

re
vi

at
io

ns
: C

I,
 c

on
fi

de
nc

e 
in

te
rv

al
.

a M
od

el
s 

w
er

e 
ad

ju
st

ed
 f

or
 a

ge
 (

co
nt

in
uo

us
),

 B
M

I 
(c

on
tin

uo
us

),
 s

er
um

 c
ot

in
in

e 
co

nc
en

tr
at

io
n 

(c
on

tin
uo

us
),

 u
ri

na
ry

 c
re

at
in

in
e 

co
nc

en
tr

at
io

n 
(c

on
tin

uo
us

),
 s

er
um

 S
H

B
G

 c
on

ce
nt

ra
tio

n 
(c

on
tin

uo
us

),
 r

ac
e/

et
hn

ic
ity

 (
ca

te
go

ri
ca

l)
, a

nd
 e

du
ca

tio
n 

(c
at

eg
or

ic
al

).

* 0.
05

 ≤
p 

<
0.

10
.

**
p 

<
0.

05
.

Reprod Toxicol. Author manuscript; available in PMC 2016 June 01.


