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Summary

We provide methods that can be used to obtain more accurate environmental exposure assessment. 

In particular, we propose two modeling approaches to combine monitoring data at point level with 

numerical model output at grid cell level, yielding improved prediction of ambient exposure at 

point level. Extending our earlier downscaler model (Berrocal, V. J., Gelfand, A. E., and Holland, 

D. M. (2010b). A spatio-temporal downscaler for outputs from numerical models. Journal of 

Agricultural, Biological and Environmental Statistics 15, 176–197), these new models are 

intended to address two potential concerns with the model output. One recognizes that there may 

be useful information in the outputs for grid cells that are neighbors of the one in which the 

location lies. The second acknowledges potential spatial misalignment between a station and its 

putatively associated grid cell.

The first model is a Gaussian Markov random field smoothed downscaler that relates monitoring 

station data and computer model output via the introduction of a latent Gaussian Markov random 

field linked to both sources of data. The second model is a smoothed downscaler with spatially 

varying random weights defined through a latent Gaussian process and an exponential kernel 

function, that yields, at each site, a new variable on which the monitoring station data is regressed 

with a spatial linear model. We applied both methods to daily ozone concentration data for the 

Eastern US during the summer months of June, July and August 2001, obtaining, respectively, a 

5% and a 15% predictive gain in overall predictive mean square error over our earlier downscaler 

model (Berrocal et al., 2010b). Perhaps more importantly, the predictive gain is greater at hold-out 

sites that are far from monitoring sites.
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1. Introduction

The need for accurate assessment of exposure to air pollutants arises to effectively 

investigate the linkage between ambient exposure and health effects. It also arises with 

regard to compliance with legislated regulatory standards to control levels of environmental 

exposure. As a result, the US Environmental Protection Agency (EPA) monitors pollutant 

levels using information from monitoring networks as well as estimates generated by 

deterministic numerical models. The former measure pollutant concentrations using 

instruments at a sparse set of stations, while the latter yield estimates of the average 

concentration in grid cells of prespecified dimensions by numerically solving complex 

systems of differential equations capturing various diffusion, chemical, and atmospheric 

processes. The computer model output spans large spatial domains with no missingness.

Fusing these information sources can improve exposure assessment at high, in fact, point-

level resolution. Combining data from multiple sources, so-called data assimilation, is well-

known in the atmospheric sciences (Kalnay, 2003). There, the goal is to combine 

observational data on the current state of the atmosphere with a short-range forecast in order 

to obtain initial conditions for a numerical atmospheric model. Most methods proposed in 

atmospheric data assimilation are algorithmic, ad hoc and do not address the “change of 

support” problem (Cressie 1993; Gotway and Young 2002; Banerjee, Carlin, and Gelfand 

2004, chapter 6).

The statistics literature on “data fusion” can be grouped into two paths. One is Bayesian 

melding (Fuentes and Raftery 2005) where observational data is combined with computer 

model output by introducing a latent point-level process driving both sources of data. The 

numerical model output is then expressed as a linearly calibrated integral over a grid cell 

(scaled by the area of the cell) of the latent point-level process while the monitoring data is 

related to the latent process via a measurement error model. A spatio-temporal extension of 

Bayesian melding has been presented by McMillan et al. (2010). This approach offers a 

solution to the problem through upscaling to grid cells.

The second approach uses a two-stage regression, dating to Guillas et al. (2008) and 

subsequently Liu, Le, and Zidek (2008), with an ad hoc method to allow the coefficients of 

the linear regression to be spatially interpolated. Berrocal, Gelfand, and Holland (2010a, 

2010b) propose univariate and bivariate hierarchical downscaler models that relate the 

monitoring station data and the computer model output using a spatial linear model with 

spatially varying coefficients in turn modeled as Gaussian processes (GPs). These models 

offer the advantage of local calibration of the numerical model output without incurring in 

problems due to the dimensionality of the computer model output, as for example in 

Bayesian melding, since they are only fitted at the numerical model grid cells where the 

monitoring stations reside.
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The contribution of this article is to provide two useful neighbor-based extensions of our 

earlier downscaler modeling work. That is, there may be useful information in the output at 

neighboring grid cells to the one where the location lies and there may be misalignment 

between stations and putatively associated grid cells. These extensions do not seek directly 

to remedy other forms of error that may be built into the numerical model (errors reflecting 

uncertainty in model input, uncertainty in the partial differential equations for the dynamics 

of pollution transport, and uncertainty introduced by the numerical approximation methods 

used to solve the resulting system of partial differential equations). In particular, these new 

models provide adaptive smoothing to the computer model output which achieves stronger 

association with the observed station data. Improved spatial interpolation of the ambient 

exposures results; using hold out data, we achieve gains of 5% and 15%, respectively, in 

predictive mean square error over our original downscaler. One extension introduces a 

Gaussian Markov random field (GMRF) to smooth the computer model. The other 

introduces spatially varying weights driven by a latent GP to accomplish the smoothing. 

This last model falls in the realm of recent work to render conditionally autoregressive 

models (CAR; Besag 1974; Banerjee et al. 2004) more flexible by allowing adaptive 

adjacency structure (e.g. Lu and Carlin 2005; Kyung and Ghosh 2010).

We apply our approach to interpolate ozone levels in space and time for the summer of 2001 

using station data and the Community Multiscale Air Quality model (CMAQ; Byun and 

Schere 2006) output. However, the strategy is applicable to other environmental 

contaminants and to other data fusion settings.

The format of the article is as follows. In Section 2, we present the motivating data. In 

Section 3, we review the elementary downscaler model (Berrocal et al., 2010b) and 

introduce two extensions. In Section 4, we discuss computation details relative to the fitting 

of these downscaler models, while in Section 5, we present results on the predictive 

performance of these models. We conclude with Section 6 where we briefly discuss future 

extensions of the smoothed downscaler with spatially varying random weights. 

Supplementary material including additional figures and results is available online at the 

Biometrics website (http://www.biometrics.tibs.org).

2. Data

Ground-level ozone is one of the six “criteria pollutants” that the US EPA is required to 

monitor by the Clean Air Act. To keep track of ozone concentration, the EPA utilizes 

monitoring devices sparsely located across the United States along with estimates of ground-

level ozone concentration produced by the deterministic numerical air quality model, 

Models-3/ Community Mesoscale Air Quality model, CMAQ (Byun and Schere 2006; 

http://epa.gov/asmdnerl/CMAQ). We illustrate our fully model based fusion approach using 

these two sources. In both cases, the data refer to the daily 8-hour maxima ozone 

concentration (henceforth daily concentration) for the Eastern United States during the 

summer months of June, July, and August 2001, when the elevated temperatures and solar 

radiation exacerbate the production of ozone.
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Figure 1 displays the locations of the 800 monitoring sites belonging to the National Air 

Monitoring Stations/State and Local Air Monitoring Stations (NAMS/SLAMS) network that 

we employed for our analysis. Of the 800 sites, we selected 700 at random as a fitting 

dataset (percentage of missing data during the 92 summer days of 2001 = 2.8%), while we 

used the remaining 100 (percentage of missing data = 2.2%) to assess the out-of-sample 

predictive performance of four approaches: (i) a kriging model using only the station data, 

(ii) the spatio-temporal downscaler model discussed above (Berrocal et al., 2010b), (iii) a 

downscaler model with GMRF smoothing, and (iv) a downscaler model with smoothing 

obtained using spatially varying random weights.

Following Berrocal et al. (2010b), Sahu, Gelfand, and Holland (2007) and references 

therein, we have modeled ozone concentration on the square root scale to achieve 

approximate normality and stabilize the variance. The observed ozone concentration data 

display a fair degree of variability during the summer months of 2001: the daily mean of the 

daily ozone concentration over the 800 monitoring sites, ranges from 5.8 to 8.5 √ppb (parts 

per billion), while the daily standard deviation varies from 0.7 to 1.6 √ppb (Figure 2a).

CMAQ produces estimates of ozone concentration over the United States at predetermined 

spatial and temporal scales. We used CMAQ for the eastern United States at 12-km 

resolution yielding 40,044 daily grid cell values. Although at areal scale rather than at point 

level, the CMAQ output has the advantage of complete spatial coverage and no missingness. 

In addition, it is moderately to fairly strongly correlated with the observed ozone 

concentration data, suggesting its potential for improved spatial interpolation. In particular, 

Figure 2(b) displays the daily correlation between the square root of observed ozone 

concentration at site s and the square root of the CMAQ output at the grid cell B that 

contains s.

3. Modeling

We briefly review the downscaler model of Berrocal et al. (2010b) and then we present the 

two promising specifications that extend the downscaler model to improve the fusion in light 

of concerns mentioned in the Introduction. For each model, we first present its static version 

and then its spatio-temporal formulation.

3.1 Static Setting

3.1.1 The univariate downscaler—Let Y(s) denote the square root of the daily ozone 

concentration observed at site s, and let x(B) indicate the square root of the daily ozone 

concentration predicted by CMAQ over grid cell B.

In the downscaler model, the change of support problem is addressed by relating Y(s) to the 

CMAQ output, x(B), at the grid cell B that contains s, via the model

(1)

where ε(s) is a white noise process with nugget variance τ2, and β0̃(s) and β̃
1(s) are spatially 

varying coefficients that can be decomposed as
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(2)

with β0 and β1, respectively, the overall intercept and slope in calibrating the CMAQ model 

output and β0(s) and β1(s), respectively, the local adjustments to these terms. Anticipating 

association between β0(s) and β1(s), the two spatially varying coefficients are in turn 

modeled as correlated mean-zero Gaussian spatial processes using the method of 

coregionalization (Wackernagel 2003; Gelfand et al. 2004). Thus, we assume two mean-zero 

unit-variance independent GPs v0(s) and v1(s) each, for convenience, equipped with an 

exponential covariance structure having decay parameters, respectively, ϕ0 and ϕ1, such that

(3)

where the unknown A matrix in (3) can be assumed, without loss of generality, to be lower-

triangular. To complete the hierarchical specification, we need to provide prior distributions 

for the overall bias terms, β0 and β1, the nugget variance, τ2, the three nonnull elements of 

the coregionalization matrix A, and the decay parameters ϕ0 and ϕ1.

The downscaler model “fuses” the two sources of data while avoiding problems due to the 

large number of grid cells (>40,000) associated with the CMAQ model output since only 

numerical model grid cells with monitoring station observations are used in fitting. As a 

result, we can address the change of support problem while avoiding introduction of 

stochastic integrals, needed in the scaling up associated with Bayesian melding. Such 

integrals render the latter models computationally challenging to fit for a large number of 

grid cells and hopeless when we introduce measurements over time.

Comparison with ordinary kriging has shown that the downscaler model yields better in and 

out-of-sample predictive performance. Lower predictive mean square and absolute value 

errors along with predictive intervals having coverage close to the nominal value result.

3.1.2 A GMRF smoothed downscaler—In (1) the CMAQ model output enters as a 

covariate. Here, we introduce a smoothed version of the {x(B)} surface arising from a latent 

Gaussian Markov random field (GMRF), i.e., let

(4)

with μ an overall mean and V(B) a mean-zero Gaussian Markov random field equipped with 

a conditionally autoregressive structure (CAR; Besag 1974; Banerjee et al. 2004). In other 

words, if g is the number of numerical model grid cells, then we assume that
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(5)

where δBi denotes the set of grid cells that are neighbors to Bi. Although the joint 

distribution of the {V(Bi)} is improper, the joint distribution for the {x(Bi)} given the V's is 

proper and so we have a valid model for the data {x(Bi)}. Also, the GMRF specification 

makes it clear that {Ṽ(B): Ṽ(B) = μ + V(B)} is a smoothed version of {x(B)}. Hence, for s ∈ 

B, we revise (1) to

(6)

where, again, β̃
0(s) = β0 + β0(s) with β0(s) modeled as a mean-zero GP with exponential 

covariance structure, decay parameter ϕ0 and marginal variance .1

Differently from the downscaler model, with the GMRF smoothed downscaler model we 

sacrifice dimension reduction. Though (6) is still fitted only at those grid cells B with 

observations, (4) with (5) requires the entire latent field V(B). Fortunately, the computation 

associated with a GMRF is local so we can still fit this model efficiently. Also, (6) through 

(4) and (5) clarifies that we are implicitly relating the Y(s) with the CMAQ model output at 

all the grid cells that are neighbors of the grid cell B containing s.

3.1.3 A smoothed downscaler using spatially varying random weights—Here, 

we introduce smoothing using weights that are random and spatially varying. Now, we 

regress the observation at site s, Y(s), on a point-level regressor, x̃(s), obtained by creating, at 

each site s, a weighted average of all the numerical model output with weights that are site-

specific.

We replace (6) with

(7)

where β̃
0(s) is as in (6) and

(8)

The weights wk(s) are in turn defined as follows: let rk, k = 1,…, g be the centroids of the g 

numerical model grid cells, and let Q(r) be a mean-zero GP having exponential covariance 

function with decay parameter ϕQ and marginal variance . Then, given {Q(rk)}, the g-

dimensional random vector of weights {wk(s)}k=1,…, g at s is given by

1With Ṽ(B) unobserved, a spatially varying β̃1(s) will not be identifiable.
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(9)

where (s − rk; ψ) is an exponential kernel with decay parameter ψ.

Expression (9) is reminiscent of the discretized version of process convolution introduced by 

Higdon (1998). However, that work developed a stochastic process model with covariance 

function induced by the kernel . Here, we are only interested in creating a spatially varying 

set of weights that are spatially dependent, positive and sum to 1. If we define the weights 

wk(s) without introducing the latent GPQ(r) they would not be directional and would have 

the same circular contour when moving from site to site. From (9), the Q(·) process is not 

identified; its center is arbitrary. So, we impose a “sum to 0” constraint, implementing it on 

the fly in the model fitting. Further discussion regarding the effect on the weights due to ψ, 

ϕQ, and  is provided in Section 4.

Evidently, we allow calibration in the association between the observational data at s, Y(s), 

and the revised numerical model output at the grid cell B that contains s. Also, we clearly 

relate Y(s) to CMAQ levels at neighbors of the grid cell s belongs to. Moreover, as in the 

GMRF smoothed downscaler model, the collection {x̃(rk)}k=1,…, g can be interpreted as a 

smoothed version of the CMAQ model output, analogous to the collection {Ṽ(Bk)}k=1,…, g.

3.2 Spatio-Temporal Modeling

We now extend these downscaler models to handle data collected over space and time.

3.2.1 The univariate downscaler—Let t denote time with t = 1,…, T, and let Y(s, t) 

denote the square root of the daily ozone concentration observed at site s and time t. 

Following Section 3.1.1, x(B, t) is the square root of the CMAQ predicted daily average 

ozone concentration over grid cell B at time t. As in the static setting, we associate to each 

point s the CMAQ grid cell B in which it lies, and extend (1) to

(10)

where . For each t = 1,…, T, we decompose β̃
i(s, t), i = 0, 1 as the sum of 

an overall coefficient and a local adjustment to it, that is: β̃
i(s, t) = βi, t + βi(s, t), i = 0, 1.

We consider two ways to introduce temporal dependence in the time varying parameters 

β0, t, β1, t, β0(s, t), and β1(s, t). The first is to assume that they are nested, i.e. they are 

independent across time; the second is to assume that they evolve dynamically in time (West 

and Harrison 1999). For the former, we would adopt  while if they 

are dynamic, we would assume

(11)
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If the β0(s, t) and β1(s, t) are assumed nested within time, then for each t = 1,…, T, they are 

expressed as a linear combination of uncorrelated latent mean-zero unit-variance GPs v0(s, t) 

and v1(s, t) having exponential covariance functions with decay parameters, respectively 

ϕ0, t and ϕ1, t, i.e. similar to (3),

(12)

with A coregionalization matrix and v0(s, t) and v1(s, t) independent replicates of two GPs. 

Conversely, if β0(s, t) and β1(s, t) evolve in time, then, following Gelfand, Banerjee, and 

Gamerman (2005), for each t = 1,…, T, we could assume

(13)

where the innovations νi(s, t) are correlated mean-zero GPs defined as:

with the vi(s, t) as above. In addition, for this model, we set βi(s, 0) = 0, for i = 0, 1. In both 

(12) and (13), we might envision A = At with At independent across time.

With two different ways in which time dependence can be modeled for each of the time 

varying parameters, β0, t, β1, t, β0(s, t), and β1(s, t), we can formulate four different versions 

of the spatio-temporal downscaler model. In experiments carried out with ozone 

concentration data for 2001 (Berrocal et al. 2010b), the spatio-temporal downscaler model 

with all time varying parameters nested within time yielded the best predictive performance. 

The flexibility to choose daily decay parameters is better than the introduction of 

autoregressive structure in the β's. In addition, fitting conditionally independent daily models 

is computationally much faster. Hence, in what follows we only consider this specification.

3.2.2 The GMRF smoothed downscaler—To extend the GMRF smoothed downscaler 

model to the space-time setting, we assume that

(14)

where we decompose β̃
0(s, t) as β̃

0(s, t) = β0, t + β0, t(s). Potential temporal dependence 

models for β0, t, β1, t and the single GP β0(s, t) can take the forms described in Section 3.2.1. 

Extending the measurement error model (4), we have:

(15)
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where  and, then Ṽ(B, t) = μt + V(B, t)

To model the temporal dependence in the latent field Ṽ(B, t), as before, we consider two 

cases. In the first, we assume that for each t, the Vt = {V(B, t)} are independent replicates 

over time of a Gaussian Markov random field provided with a conditional autoregressive 

prior, that is, for each t:

(16)

In a second case, we assume that the g-dimensional random vectors Vt, t = 1,…, T, have an 

AR(1) structure in time. Therefore, for each t

(17)

where κt = {κ(B, t)} is a Gaussian Markov random field with a conditional autoregressive 

structure and V0 = {V(B, 0)} ≡ 0. As noted above, we only consider the model where the 

β0, t, β1, t, β0(s, t), and the Vt = {V(B, t)} are independent in time.

3.2.3 The smoothed downscaler using spatially varying random weights—
Extending (7), we assume that:

(18)

where β̃
0(s, t) = β0, t + β0(s, t). Potential models for the time varying parameters β0, t, β1, t and 

β0(s, t) are as in Section 3.2.1 and 3.2.2. To define x̃(s, t), straightforward extension of (8) 

yields

(19)

where the weights wk(s, t) are random and varying both in space and time. Again, we let rk, 

k = 1,…, g denote the centroids of the g numerical model grid cells. First, we introduce 

independent latent mean-zero GPs, Q(r, t), t = 1,…, T, with exponential covariance 

structure, decay parameter ϕQt and variance . Then, the weights wk(s, t) take the form:

(20)

where (s − rk; ψt) = exp(−ψt |s − rk|), an exponential kernel with decay parameter ψt. This 

model allows the flexibility of spatially and temporally varying weights.
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In an alternative formulation, the weights can be specified dynamically by assuming that the 

latent GP Q(r, t) follows an AR(1) process in time, i.e.,

(21)

with λ(r, t) independent GPs, Q(r, 0) ≡ 0 and the weights as in (20). Again, we only 

consider the γ = 0 case, i.e. independent Q surfaces over time. As in the static setting, we 

impose a sum to 0 constraint on each of the GPs Q(r, t), t = 1,…, T.

4. Model fitting

4.1 Priors

All the downscaler models introduced in Section 3 arise as a Bayesian hierarchical 

formulation and are completely specified given priors for all the parameters. In this section, 

we briefly discuss the priors adopted for the various model parameters.

First, we consider the static case. Global calibration of the numerical model output results 

from β0 and β1 for which we employ a bivariate normal prior with prior mean equal to (0 1)′ 

and a diagonal prior covariance matrix with very large diagonal entries corresponding to 

vague prior variances. For the coregionalization matrix A introduced in the downscaler 

model in (3) we specify a prior via its entries. More precisely, we place vague lognormal 

priors on the diagonal terms of A, as they are related to the variances of the local 

adjustments β0(s) and β1(s) and a vague normal prior on the off-diagonal element A21. For 

all models, we adopt standard conjugate inverse gamma priors for all the variance terms, 

that is, for τ2, σ2, ξ2, . In particular for  we chose an inverse gamma prior with 

prior scale equal to 2 and with prior mean equal to 1.0. With more interest in smoothing than 

in measurement error, we place a rather informative prior on σ2 specified so as to produce a 

posterior mean for σ2 smaller, on average, than that of ξ2, hence allowing for more 

variability in V(B) than in η(B).

For the GMRF smoothed downscaler model, we assign a vague normal prior to μ with prior 

mean equal to the average, over all grid cells B, of the numerical model output, x(B). Similar 

definition was adopted in the spatio-temporal case; for each t = 1,…, T, the prior mean for μt 

was taken to be equal to the average of x(B, t).

Regarding priors for the decay parameters, it is not possible to consistently estimate all the 

spatial covariance parameters under weak priors (Zhang 2004). In light of this, we adopted 

the following strategy: we used a continuous prior—an inverse gamma—for the marginal 

variance, while we used a discrete prior placed on a grid of values for the decay parameters. 

That is, for ϕ0 and ϕ1, we placed a discrete uniform prior on the grid of values, 0.0015, 

0.001, 0.01, 0.05, and 0.1, corresponding, respectively, to practical ranges of about 3000, 

2000, 300, 60, and 30 km. In the spatio-temporal case, we assumed that for each t, ϕ0, t, and 

ϕ1, t followed the same discrete uniform prior.

We could adopt the above specifications for the spatial decay parameters ψ and ϕQ in the 

downscaler with spatially varying random weights. However, we chose to keep them fixed. 
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We set ψ equal to 0.08 yielding an exponential kernel with a range of approximately 36 km, 

that is three 12-km grid cells. Essentially, only first, second, and third order grid cell 

neighbors contribute nonnegligibly to the weighted average x̃(s) at s. Experiments with ψ's 

in the neighborhood of 0.08 didn't reveal sensitivity in terms of predictive performance.

The parameter ϕQ determines the smoothness of the process Q(r) and, thus, affects the 

smoothness of the weights wk(s) as s moves across the spatial domain. It is clear that the 

smaller ϕQ is, the smoother realizations of Q(r) will be and thus, through (9), resulting 

weights may be less site-specific than we wish. So, we set ϕQ equal to 0.12 (larger than ψ), 

which corresponds to a range of approximately 24 km, i.e., two 12-km grid cells. 

Experiments with daily decay parameters ψt and ϕQt yielded no distinguishable gain in 

model performance.

4.2 Computational details

We fit each of the downscaler models presented in Sections 3.1.1, 3.1.2, and 3.1.3 using a 

Markov Chain Monte Carlo (MCMC) algorithm. Previous experience with the downscaler 

(Berrocal et al. 2010b) suggested that we keep only the local intercept adjustment β0(s) 

different from zero. Thus, we have a single GP and all priors are conjugate.

In the smoothed downscaler using spatially varying random weights, the posterior 

distribution of the latent GP Q(r) does not have a closed form. Hence, it is necessary to use a 

Metropolis–Hastings algorithm within the MCMC algorithm where we impose the sum to 0 

constraint “on the fly” after each MCMC iteration (Besag et al. 1995). Moreover, we also 

face a dimensionality problem. To obtain a new sample of weights at each iteration, it is 

necessary to derive a realization of the latent process Q(r) at the g numerical model grid cell 

centroids rk. Given the size of g, to reduce the computational burden associated with the 

sampling of the weights in (9) and (20), respectively, we replace Q(rk) and Q(rk, t), 

respectively, with the predictive processes (Banerjee et al. 2008) Q̃(rk) and Q̃(rk, t). We used 

m = 648 knots thinned from the centroids of the overall set of 40,044 CMAQ grid cells by 

systematically selecting knots every 8 rows and 8 columns. So many knots selected in a 

space-filling fashion avoids concern regarding knot selection issues (see Banerjee et al. 

2008). More details on predictive processes and our implementation are provided in the 

Appendix.

Extension of the MCMC algorithm to the space-time setting is straightforward when the 

time varying parameters are independent across time. However, we still fit a joint model due 

to the common variance parameters, e.g., τ2, σ2, ξ2, . If some of the time varying 

parameters evolve dynamically in time, fitting requires embedding the Forward Filtering 

Backward Sampling (FFBS, Carter and Kohn 1994; West and Harrison 1999) algorithm 

within the MCMC algorithm. Finally, we accommodated missingness in the training dataset 

by using data augmentation to fill in the missing Y(s, t) at each MCMC iteration under the 

assumption that the missingness is ignorable.
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5. Results

We discuss results for the spatio-temporal versions of the three downscaler models where all 

the time varying parameters are assumed to be independent across time along with an 

ordinary kriging model obtained from (10) by setting β1̃(s, t) equal to 0. As mentioned in 

Section 2, we fit the models to 700 training sites and we assess the predictive performance 

of the various models at 100 hold-out sites. We evaluate the out-of-sample predictive 

performance of each model in terms of Predictive Mean Square Error (PMSE), averaged 

across space and time, Predictive Mean Absolute Error (PMAE), averaged across space and 

time, the average length of the 95% predictive interval, averaged across space time, and the 

empirical coverage of the 95% predictive interval. Table 1 presents results for these statistics 

for the four models. All downscaler models yield predictions with much lower PMSE and 

PMAE than an ordinary kriging model, demonstrating the benefit of using the information 

contained in the CMAQ output. In turn, both the GMRF smoothed downscaler and the 

smoothed downscaler using spatially varying random weights provide substantial 

improvement over the downscaler, supporting the need to account for error in the 

association that links the observation at a site s, Y(s), to the numerical model output at the 

grid cell B that contains s. In particular, the GMRF smoothed downscaler provides a 5.3% 

and a 1.9% reduction, respectively, in PMSE and PMAE over the downscaler, while the 

smoothed downscaler using spatially varying random weights yields a 14.5% and 5.7% 

improvement, respectively, in PMSE and PMAE. It is noteworthy that the improvement in 

PMSE and PMAE of the GMRF smoothed downscaler and of the smoothed downscaler with 

spatially varying weights over the downscaler model is larger at sites that are farther from 

monitoring training sites (figure available in online supplementary material).

Spatial plots of the posterior mean of {x̃(rk, t)}k=1,…, g, {Ṽ(Bk, t)}k=1,…, g and of the CMAQ 

model output {x(Bk, t)}k=1,…, g for July 4, 2001 for a subregion of the Eastern US are shown 

in Figure 3. Both the GMRF smoothed downscaler and the smoothed downscaler using 

spatially varying random weights yield surfaces that are smoother than the original CMAQ 

output and, as Table 1 indicates, are better associated with the monitoring data. All three 

downscaler models yield predictions of ozone concentration over the entire spatial domain. 

However, differently from the numerical model output, the three downscaler models 

produce predictions that are better calibrated than CMAQ itself.

Figure 4 shows the observed ozone concentration on August 9, 2001 at monitoring sites 

located in two subregions of the Eastern US along with the posterior predictive mean of 

ozone concentration resulting from the smoothed downscaler with spatially varying random 

weights. The predictive surfaces displayed in panels (b) and (d) reproduce the spatial 

gradient that is visible in the monitoring station data and tend to agree rather well with the 

observational data.

All three downscaler models provide information on the daily local and global bias of the 

CMAQ model output through β0, t, β1, t and β0(s, t). Though all the downscaler models have 

been fitted to ozone concentration on the square root scale, inspection of the posterior mean 

and 95% credible intervals for β0, t and β1, t clearly indicates that there is a need for 

calibration of CMAQ since for most days during the three months of June, July, and August 
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2010, all three models yield posterior estimates for β0, t and β1, t significantly different from 

0 and 1, respectively.

Spatial plots of the weights wk(s, t) for July 4, 2001, associated with four sites located in the 

Eastern US and depicted in Figure 5(a) are shown in Figures 5(b)–(e). In each plot, the 

location of the site within the numerical model grid cell is marked with a dot. As Figures 

5(b)–(e) illustrate, the weights have a different orientation and magnitude from site to site.

In particular, sites s1, s2 and s3 assign a larger weight to the grid cell B where they lie, while 

site s4 assigns similar weights to three numerical model grid cells, including the one in 

which it lies. In addition, the weights reveal different directionalities for the different sites. 

The weights wk(s, t) not only vary in space, but they also vary in time. This is evident by 

inspecting the posterior mean of the weights wk(s, t) at the same four sites using two 

additional days—July 20 and August 9, 2001 (figure available in the supplementary online 

material). These days were chosen because they are characterized by different conditions in 

terms of variability in the observed ozone concentration data as illustrated in Figure 2.

Finally, we investigated whether the new regressor, x̃(s, t), is better correlated with the 

monitoring data, i.e., it explains the observational data better than the numerical model 

output itself. In this regard, we have computed the daily correlation between Y(s, t) and, 

respectively, the numerical model output x(B, t), the posterior mean of ṼB, t), and the 

posterior mean of x̃(s, t) where B still denotes the grid cell containing s. Table 2 reports 

values of these correlations for the three selected days of July 4, July 20, and August 9, 

2001. We see that x̃(s, t) has a higher correlation with Y(s, t) than x(B, t) and Ṽ(B, t).

6. Discussion

We have presented two extensions of our earlier downscaler approach that smooth the 

computer model output for insertion into a linear regression with spatially varying 

coefficients. These regressions provide daily interpolated exposure surfaces, assimilating the 

observed station data with the computer model output. Through a hold-out sample 5% and 

15% improvement in predictive mean square error emerges for these new models relative to 

the original downscaler. Furthermore, greater improvement in predictive performance is 

found at sites that are far from the monitoring sites.

These new models are more demanding to fit than the original downscaler. However, the 

GMRF smoothed downscaler can take advantage of the associated convenient full 

conditional updating while the smoothed downscaler with spatially varying random weights 

can be implemented using dimension reduction through predictive processes. User-friendly 

software for fitting the latter model is available on request. Again, fitting a daily fusion 

model that requires stochastic integration is infeasible with more than 40, 000 grid cells 

much less across thetimeofanentireozone season.Furthermore, despite being uncalibrated, 

CMAQ contains useful information for predicting ozone concentration at unmonitored sites: 

all downscaler models yielded a substantial improvement in out-of-sample predictive 

performance over an ordinary kriging model.
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Both extensions of the downscaler model can be used in conjunction with an environmental 

exposure analysis. If the health data is point-referenced, then the health outcome at s could 

be modeled as a function of ozone concentration at s, where the ozone concentration at s is 

the posterior predictive mean obtained from the model. Similarly, if the health outcome is 

aggregated over an area, then it could be regressed on the posterior predictive mean of the 

average ozone concentration over the area. Arguably better is a joint Bayesian approach that 

models exposure and health outcome jointly and induces a conditional model for outcome 

given exposure.

Further work is following two tracks. One notes that the primary US EPA air quality 

standard for ozone is specified in terms of the fourth highest daily maximum across the year 

exceeding a particular threshold. Using these new models, we would like to provide 

predictive distributions to assess compliance with respect to this criterion. A second track 

seeks to develop conditional CAR models using weights that are driven by a GP. That is, 

given the GP realization, we will define the weights to yield a valid Gaussian CAR model. 

This enables CAR models with random, spatially varying weights. Allowing directionality 

in weights enables improved reconstruction of blurred images using GMRF's. We will report 

on this in a forthcoming manuscript.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Appendix

A.1 Predictive Process Models

In this appendix we provide a brief review on predictive process models and we illustrate 

how predictive processes can be employed in the smoothed downscaler model with spatially 

varying random weights to ease computation.

Let Y(s), s ∈ , denote a spatial process, not necessarily Gaussian. The classical 

geostatistical model decomposes Y(s) as follows:

(A.1)

where μ(s) represents the mean structure of Y(s), and w(s) is modeled as a mean-zero GP 

with covariance function C(·, ·; θ). Inference on the covariance parameter θ is 

computationally challenging if a large number of observations is available.

The predictive process model addresses this problem by replacing w(s) in (A.1) with the 

predictive process w̃(s) defined as follows. Let  be m pre-specified sites, or knots, 

in  and let w* denote the m × 1 vector . Then, for each s ∈ , the 

predictive spatial process w̃(s) derived from the parent process w(s) is defined as
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(A.2)

where c(s; θ) is the m × 1 vector with ith component equal to , C*(θ) 

is the m × m matrix with (i, j)th element equal to  and w* ∼ MVNm(0, C*(θ)).

In other words, the predictive process w̃(s) is the projection of the original spatial process 

w(s) onto the m-dimensional space generated by w*. Simulation experiments assessing the 

performance of predictive process models on knots location has shown little sensitivity of 

results on knots selection, particularly if the knots are chosen on a regular grid with small 

spacing relatively to the range of the parent process w(s).

In the smoothed downscaler model with spatially varying weights, we introduce predictive 

processes to alleviate computation when working with the complete CMAQ model output 

consisting of g=40,044 grid cells. In this situation, as mentioned in Section 4.2, rather than 

working with the full 40,044-dimensional vectors (Q[rk])k=1,…, g and (Q[rk, t])k=1,…, g, we 

replace Q(rk) and Q(rk, t), respectively, with Q̃(rk) and Q̃(rk, t) defined using (A.2) and 

m(=648) dimensional vectors Q* and . Then, at each MCMC iteration, we update the m-

dimensional random vector  and , 

respectively, by block-updating, using four blocks of dimension 162 and a random-walk 

multivariate normal proposal with diagonal covariance matrix and proposal variance 

appropriately chosen to achieve an acceptance rate of 25 − 40%. We then update the 

predictive process Q̃(rk), k = 1,…, g (respectively, Q̃[rk, t]) and the corresponding new sets 

of weights wk(s), k = 1,…, g (respectively, wk(s, t), k = 1,…, g) for each site s, and we accept 

or reject the new proposed value following the conventional Metropolis-Hastings scheme. 

The conditional distributions of the remaining parameters are sampled directly.

A.2 Full Conditionals

Here we provide full conditionals for Vt and  in, respectively, the GMRF smoothed 

downscaler and the smoothed downscaler with spatially varying random weights. To 

facilitate exposition, we present full conditionals for the case of no missing data. Extension 

to handle missing data is straightforward.

For each t, let Yt = (Y [s1, t],…, Y[sn, t])′ denote the n × 1 vector of observations of ozone 

concentrations for day t and β0t denote the n × 1 vector β0t = (β0[s1, t],…, β0[sn, t])′. Let 

 and  denote, respectively, the ni × 1 vectors (Y[sj, t])j=1,…, ni and (β0[sj, t])j=1,…, ni 
with sj ∈ Bi. For each t and i = 1,…, g, from (14), (15), and (16), it follows that the full 

conditional distribution [V(Bi, t)|{V(Bj, t), j ≠ i}, μt, β0, t, β1, t, β0t, ξ2, τ2, σ2, Yt, x(Bi, t)] is a 

 distribution with
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and

where 1 is a ni × 1 vector of all 1's.

Now we derive the full conditional distribution of  in the smoothed downscaler model 

using spatially varying random weights. For each t = 1,…, T, let Q̃(rk, t), k = 1,…, g denote 

the predictive spatial process derived from the parent process Q(r, t). Then, from (A.2), for 

each k = 1,…, g

(A.3)

We indicate with  the g × g diagonal matrix with (k, k)th element exp(Q̃(rk, t)), and with 

J the g × g matrix of all 1's. Let Kt indicate the n × g matrix Kt = ( [si − rj; 

ψt])i=1,…, n;j=1,…, g and let Wt denote the n × g matrix of spatially varying weights Wt = (wj 

[si, t])i=1,…, n;j=1,…, g. Then, from (20) it follows that

(A.4)

where ∘ indicates the Schur product of matrices and the above division of matrices is 

element-wise.

The Gaussian prior specification for the parent process Q(r, t), and the likelikood in (18) 

imply that the full conditional distribution , t = 1,…, T 
is
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where Xt is the g × 1 vector Xt = (x(B1, t)…x(Bg, t))′, I is the n × n identity matrix and Wt is 

as in (A.4).
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Figure 1. 
Training and validation sites used to fit and assess the out-of-sample predictive performance 

of the ordinary kriging model, the downscaler, the GMRF smoothed downscaler and the 

smoothed downscaler using spatially varying random weights.
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Figure 2. 
(a) Daily mean (filled circles) and standard deviation (empty circles) of square root of 

observed ozone concentration at all the 800 monitoring sites. (b) Daily correlation betweeen 

square root of observed ozone concentration and square root of CMAQ output of ozone 

concentration. In both plots, the three days for which we will present results in Section 5 are 

surrounded by a box. They are, respectively, July 4, July 20, and August 9, 2001.
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Figure 3. 
Spatial maps of: (a) the square root of the CMAQ output, x(B, t), (b) the posterior mean of 

Ṽ(B, t), and (c) the posterior mean of x̃(B, t), for July 4, 2001 for a subregion in the 

Northeast.
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Figure 4. 
(a)–(c) Observed ozone concentration (ppb) on August 9, 2001 in two subregions of the 

Eastern US. (b)–(d) Posterior predictive mean of ozone concentration on August 9, 2001 as 

yielded by the smoothed downscaler with spatially varying random weights.
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Figure 5. 
(a) Location of the four sites for which we are displaying the posterior predictive mean of 

the spatially varying random weights wk (s, t). (b)–(e) Posterior predictive mean of the 

spatially varying random weights wk (s, t) for sites: (b) s1; (c) s2; (d) s3; and (e) s4 on July 4, 

2001.
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Table 1

Predictive Mean Squared Error (PMSE), Predictive Mean Absolute Error (PMAE), average length of the 95% 

predictive interval, and empirical coverage of the 95% predictive interval for the numerical model CMAQ, the 

new regressor x̃(s, t), an ordinary kriging model, the downscaler, the GMRF smoothed downscaler and the 

smoothed downscaler with spatially varying random weights

Model PMSE PMAE Average length of 95% PI Empirical coverage of 95% PI

CMAQ model 135.9 9.1 — —

x̃(s, t) 124.2 8.7 — —

Ordinary kriging 60.9 5.8 30.6 94.8%

Downscaler 53.1 5.3 30.4 94.9%

GMRF smoothed downscaler 50.3 5.2 29.4 94.9%

Smoothed downscaler with spatially varying random 
weights

45.4 5.0 27.7 95.0%
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Table 2

Correlation between the square root of the observed ozone concentration at the training sites, Y(s, t), and the 

square root of the CMAQ output, x(B, t), the posteriormeanof Ṽ(B, t) where s ∈ B, and the posterior mean of x̃

(s, t) for three days in the summer of 2001: July 4, July 20, and August 9, 2001

Day x(B, t) Posterior mean of Ṽ(B, t) Posterior mean of x̃(s, t)

07/04/2001 0.52 0.59 0.61

07/20/2001 0.76 0.80 0.81

08/09/2001 0.78 0.85 0.86
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