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Abstract

Many existing cohort studies designed to investigate health effects of environmental exposures 

also collect data on genetic markers. The Early Life Exposures in Mexico City to Neuro-Toxicants 

(ELEMENT) project, for instance, has been genotyping SNPs on candidate genes involved in 

mental and nutrient metabolism and also in potentially shared metabolic pathways with the 

environmental exposures. Given the longitudinal nature of these cohort studies, rich exposure and 

outcome data are available to address novel questions regarding gene-environment interaction (G 

× E). Latent variable (LV) models have been effectively used for dimension reduction, helping 

with multiple testing and multicollinearity issues in the presence of correlated multivariate 

exposures and outcomes. In this paper, we first propose a modeling strategy, based on LV models, 

to examine the association between repeated outcome measures (e.g., child weight), and a set of 

correlated exposure biomarkers (e.g., prenatal lead exposure). We then construct novel tests for G 

× E effects within the LV framework to examine effect modification of outcome-exposure 

association by genetic factors (e.g., the hemochromatosis gene). We consider two scenarios: one 

allowing dependence of the LV models on genes and the other assuming independence between 

the LV models and genes. We combine the two sets of estimates by shrinkage estimation to trade 

off bias and efficiency in a data-adaptive way. Using simulations we evaluate the properties of the 

shrinkage estimates and, in particular, we demonstrate the need for this data-adaptive shrinkage 

given repeated outcome measures, exposure measures possibly repeated and time-varying gene-

environment association.
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1. Introduction

Most common human diseases have a multifactorial etiology involving genetic factors (G) 

and environmental exposures (E). In recent years, many environmental cohort studies 

initially designed to study environmental health effects have begun to collect genetic 

information on study participants. One of the initial goals of the Early Life Exposure in 

Mexico to Environmental Toxicants (ELEMENT) project, for example, was to assess the 
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impact of lead exposure on children's mental development. However, the ELEMENT 

project, now of more than 18 years duration, has expanded to include longitudinal outcomes 

such as anthropometry, adolescent behavior, sexual maturation and cardiovascular health 

among youth [1–3]. Given the solid grounding in environmental health, measures of 

multiple toxicants, particularly lead, are available, and some have been measured repeatedly 

over time. With the lowering cost of genotyping technologies, the study has begun to 

genotype stored biological samples for single nucleotide polymorphisms (SNPs) along genes 

known to be involved in mental or nutrient metabolism [4–8]. It is now possible to 

interrogate the available ELEMENT data to help elucidate questions regarding how genetic 

makeup may exacerbate or reduce exposure effects previously identified, i.e., examine gene-

environment interaction (G × E) [9–12]. Meanwhile, given known challenges to conduct G 

× E studies primarily due to sample size limitations [13], there is an increasing need for 

methods and modeling strategies that can exploit the complex data structure in an efficient 

and simultaneously robust way.

In this manuscript we develop modeling strategies to examine the joint impact of genes and 

multiple exposure measures on health outcomes measured repeatedly over time. To motivate 

and illustrate the ideas, we focus on four biomarkers of prenatal lead exposure (maternal 

bone lead concentrations at two sites, and maternal and umbilical cord blood lead 

concentrations), two SNPs on the hemochromatosis (HFE) gene, and weight measured 

approximately every six months from birth to age of four. Given that weight is measured at 

multiple time points approximately balanced across participants, one possible simple 

analysis is to look at each pair of (G, E) at a given time point by running several cross-

sectional analyses using multiple linear regression. This naïve method lacks power due to 

the cost of multiple testing. One could alternatively use standard mixed models or 

generalized estimating equations to account for the complete longitudinal trajectory of 

outcome in one model, but again look at each pair of (G, E) separately. With a SNPs and b 

exposures, this will lead to a × b different models. By reducing the dimension of G, E and Y, 

one can decrease the number of tests and models to be fit. With a correlated set of exposure 

biomarkers, measures of lead in our example, the use of latent variables is a natural way to 

reduce the dimension of the exposure space. Very few papers in the literature contain 

examples of a multi-G-multi-E analysis in a joint multivariate-Y model.

Longitudinal studies offer more precise characterization of cumulative lifetime exposure and 

within-person variability than a cross-sectional or case-control study [14, 15]. However, 

they require careful analytic considerations as the interplay of genes and environment may 

change dynamically over time. That is, the effect modification role of genetic factors may 

become increasingly important, or their initial protective role may fade over time. In spite of 

the vast literature on statistical methods for analyzing G × E effects in case-control studies 

[16, 17], efficient alternative modeling strategies for G × E effects in longitudinal studies 

have received very little attention [18].

Latent variable (LV) models have been widely used in modeling longitudinal and multi-

level data [19, 20]. They have also been applied in environmental health studies to 

characterize the health effects of a set of environmental exposures that are highly correlated, 

thus avoiding the multiple testing issue when dealing with each exposure individually [21, 
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22]. These models have great potential in testing G × E effects in the context of multiple 

genes and multiple correlated environmental exposures.

Currently, only a few studies have attempted LV models for studying G × E effects in cross-

sectional or cohort studies [23–26]. As a recent contribution to this area, Sánchez et al. [26] 

investigated G × E effects for univariate outcome with multiple correlated exposures in a 

cross-sectional study. They built LV models for the exposures to deal with the exposure 

measurement errors and boost efficiency for testing G × E effects by reducing the number of 

tests and combining information across the available biomarkers. One important 

contribution of their paper was to allow for a separate gene-environment (G-E) dependence 

model that may help understand how exposures are related to genes (especially when the 

genes are chosen based on the metabolic pathway for the environmental exposures). To 

improve efficiency and protect against bias, the authors used shrinkage estimation for 

various specifications of the G-E association model [27–29]. Their proposed approach 

yielded estimates that balanced between bias and variance, and provided an automated way 

to avoid model selection issues since a robust adaptive estimator was recommended as the 

default choice.

However, a general LV framework for studying G × E effects on longitudinal or multivariate 

outcomes has not been proposed. In this paper, we undertake the task of integrating 

longitudinally measured outcome, a set of correlated exposures (potentially time-varying) 

and genes (time-invariant genotype data measured at SNPs), as an extension to the cross-

sectional framework of Sánchez et al. [26]. Several new and challenging enhancements are 

warranted. First, we propose to use LV models for both exposures and the longitudinal 

outcome. We model the weight trajectories using random coefficients corresponding to 

parametric functions of time that are chosen a priori; the use of random coefficients 

naturally fits into the general latent variable modeling framework [20]. Figure 1 is a path 

diagram describing the relationships between exposures biomarkers (E), latent exposures 

(U), genes (G), latent outcome (B) and observed longitudinal health outcome (Y). The 

diagram encodes the time-independent G × U term (interaction arrow directed at the random 

intercept B0), as well as the three-way G × U × T term of interest (dashed arrow directed at 

the latent outcome Bk). Second, in addition to combining estimates from models that assume 

varying degrees of G-E dependence [26], we also consider varying degrees of dependence of 

the variance of the longitudinal outcome on the genetic factors, denoted as G-b 

heteroscedasticity. The third and main novelty is to consider time-varying G × E effects. 

This time-dependent interaction may be captured by a linear three-way interaction term G × 

U × T, or, by a more complex non-linear function of time. We additionally examine how 

adaptive shrinkage estimation can be used to gain power for detecting this time-dependent 

interaction when the gene-environment association structure can vary over time. Previous 

work in adaptive shrinkage in longitudinal studies is limited.

We organize the rest of this paper as follows: In Section 2, we present the LV models for 

both a set of correlated exposures and the longitudinal outcome including gene-environment 

interactions. We also incorporate varying degrees of G-E and G-b heteroscedasticity into our 

modeling framework and present shrinkage estimation to adaptively compromise between 

the most parsimonious and most flexible models. In Section 3, we present a more general 
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LV model where the exposures may vary over time. Analyses of the ELEMENT data 

(Section 4) and simulation studies (Section 5) bring out salient features of our modeling and 

G × E testing strategy. Section 6 briefly discusses the advantages and limitations of our 

methodology and indicates possibilities for further extensions.

2. Latent variable models for G × E studies with longitudinal outcome

2.1 Model formulation

Let Yij denote the health outcome for subject i (i = 1, …, N) at time tij (j = 1, …, ni). Let Ui 

be an m × 1 vector of latent exposures underlying the observed exposures measurements Ei 

(p × 1, p > m). In our motivating example, m = 1, p = 4, and U represents prenatal lead 

exposure as reflected by the four lead biomarkers collected in several tissues. In other 

applications, variables in E may represent metabolites of a parent compound U [30], and one 

can propose more than one U (m > 1) if more than one family of exposure biomarkers are 

observed (e.g., mercury and polychlorinated biphenyls) [31], or if exposures are observed 

repeatedly over time [32]. Genetic subgroups are denoted by a categorical variable Gi. For 

brevity, we consider only binary Gi: for example, given multiple risk alleles this may be zero 

for wild type and one for at least one variant. To deal with more categories (e.g., quantiles of 

a polygenic risk score [33]), we can simply use multiple dummy variables. Our LV models 

contain two parts: the exposure model and the outcome model.

The exposure model consists of a measurement model relating the observed exposures 

measurements Ei to the latent variables Ui

(1)

and an accompanying model with covariates Vi (q × 1) that may be related to the latent 

variables Ui

(2)

Mean vectors ν0 and ν1 are p × 1, while factor loadings matrices Λ0 and Λ1 are p × m (see 

identifiability constraints below). Note that (1) allows the intercepts and factor loadings to 

differ by genetic subgroups. The error vector δi has zero mean and covariance matrix ΘG (p 

× p) that may also depend on genetic subgroups. The hypotheses of Λ1 = 0, ν1 = 0 and ΘG = 

Θ could be tested using standard procedures [34, 35] which may have low power, but we 

avoid this model selection step by shrinkage estimation (see Section 2.2 for details). 

Regression coefficients α0 and α1 are m × 1, and αV is m × q. The error vector ζi has mean 

zero and covariance matrix ΦG (m × m). In (1) and (2), ν1, Λ1 and α1 characterizes the G-E 

association. We present the exposure model with coefficients independent of time, which is 

usually the case when we have time-invariant exposures (e.g., prenatal lead exposures). We 

also propose an extension of this model to time-varying exposures in Section 3.

The outcome model follows the latent growth curve modeling approach [20, 36, 37]. The 

longitudinal trajectory is modeled by
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(3)

where B0i is the subject-specific intercept (e.g., birth weight for subject i) and Bki is the 

subject-specific slope corresponding to a known functional predictor term fk(t) (e.g., t, t2 or 

t−1, k = 1, …, K), which captures non-linearity in the trajectories, and between-subject 

variation in the growth curves. We can choose fk 's from a known set of parametric functions 

using model selection criteria (e.g., Bayesian information criteria) [37], prior to 

incorporating genes and exposures into the model. We assume that εij's are independently 

distributed with mean zero and variance σ2 (under a balanced design, the variance can be 

allowed to vary over time if necessary). The latent outcomes B0i and Bki explain the 

correlation between Yij's. We then associate B0i or B0i and Bki with Ui and Gi conditional on 

a set of baseline covariates/confounders Zi via the following models:

(4)

(5)

The random effects b0i and bki have a joint normal distribution with mean zero and variance 

DG, again allowed to vary across genetic subgroups. By plugging (4) and (5) into (3), one 

can see that parameter vectors βG×U,0 and βG×U,k characterize the G × E effects at baseline 

and subsequent time points, respectively. To model the latent outcomes Bk in (5) as fixed 

effects, we constrain the variance of its corresponding bk to be zero; the variance of B0 will 

generally not be zero given the correlations among the repeated outcome measures. 

Although in the general notation of (5), we have allowed all baseline covariates Zi to be 

associated with Bki, in practice this may have to be restricted by certain assumptions, either 

from the perspective of estimating a potentially large number of parameters βZ,k, or through 

a priori knowledge that may rule out the effect of certain covariates on Bki. Such constraints 

can be readily imposed by fixing subsets of βZ,k to be zero. Finally, if time-varying 

covariates are available, they can be added directly to (3) as fixed effects.

In summary, (1) ∼ (2) denote the relationships among observed and latent exposures and 

their relationships to covariates, and (3) ∼ (5) link observed outcomes to latent growth 

outcomes, and latent outcomes to latent exposures, genes and covariates. The parameters in 

(1) ∼ (5) and their meanings are listed in Table 1.

Overall G × E model—Models (1) ∼ (5) are presented as general models for G × E 

analysis, allowing for time-varying G × E effects. In practice, we might first explore whether 

there is an overall G × E effect marginalized over time, i.e., to test H0: βG×U,0 = 0 in (4) 

while forcing βG×U,k in (5) to be zero. We refer to this model as the “overall G × E model”. 

In reference to Figure 1, the overall G × E model describes the structural relationship 

between G, U and B0 while removing the dashed line representing G × E × T effects.
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G × E × T model—To examine whether the G × E effects vary over time, we can test H0: 

βG×U,k = 0 for all k = 1, …, K in (5). We call the model that estimates βG×U,k the “G × E × T 

model”, which corresponds to the presence of the dashed line in Figure 1. However, since fk 

's are chosen principally to model the trajectory of the health outcome, they may not fully 

capture the true functional form of the temporal variation in G × E effects. To gain a better 

idea of this functional form, we may resort to prior literature or exploratory methods. For 

example, if the outcome is measured at several fixed time points (e.g., yearly weight) and 

sample size is adequate, we may model the G × E effect on the outcome at each distinct time 

point separately (i.e., time treated as dummy variables). We then plot the G × E coefficients 

against time in a meta-regression analysis to gauge a suitable functional form of time-

varying interaction. We may need to include a function of time, not necessarily a subset of 

the fk 's, to be incorporated into (5) to better model the G × E × T effect. We use our data 

example to illustrate such exploratory strategies.

Identifiability—To make the LV models identifiable, we put standard constraints on the 

model parameters [22, 38]. For instance, typical constraints involve having factor loading 

matrices be pre-specified as block diagonal, which means that a given observed exposure 

reflects only one latent variable, letting the first element of each nonzero block be one, and 

fixing the first element of the intercepts to be zero. These constraints fix the mean and scale 

of the latent variable, which are otherwise not identifiable. We apply these types of 

constraints to the measurement model (1). Specifically, we constrain the first entries of each 

block of Λ0 to be one and the corresponding entries of ν0 to zero so that the mean and scale 

of the latent variables in the reference genetic subgroup are identifiable. However, as G 

appears also in (2), more constraints are needed. We additionally fix the first entries of the 

corresponding blocks of Λ1 to be zero such that the units of the latent variable are the same 

in both groups; this ensures identifiability of the variance of the latent variable among the 

genetic reference subgroup, ΦG=0 in (2). Similarly, we constrain the corresponding entries 

of ν1 to be zero such that the difference in means of the latent exposures between the genetic 

subgroups (i.e., α1 in (2)) is identifiable. For instance, in the context of prenatal lead 

exposure (Section 4), the factor loading corresponding to patella lead in Λ0 is set to 1 and 

the difference in the factor loading for patella lead between the genetic subgroups, element 

in Λ1 corresponding to patella lead, is zero so that the units of the latent variable are in the 

units of patella lead concentration (μgPb/g) in both groups. We also assume that the off-

diagonal elements of ΘG are zero, reflecting conditional independence between Ei's given 

Ui. Note that this conditional independence is not strictly required, and can be relaxed given 

strong a priori knowledge (e.g., use of the same laboratory or other circumstances that may 

give rise to additional correlation among Ei's). If sample size is small, we can consider 

additional constraints to reduce the number of parameters to be estimated, for example, 

forcing the elements of ΘG to be identical across genetic subgroups, i.e., ΘG = 0 = ΘG = 1.

2.2 Likelihood and estimation

Let  and θ be the vector of all model parameters. Assuming normality for all 

residuals, and integrating over the LV, the joint marginal distribution of the observed 

outcomes and exposures for subject i has a multivariate normal density f(Oi|Gi, ti,Vi, Zi;θ) 
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(see Supplementary Materials, Likelihood, for details). The log likelihood of θ is then, 

. We apply the standard maximum likelihood estimation 

(MLE) to our LV models, using the R package lavaan by Rosseel (2012) (http://lavaan.org) 

[39]. The parameter estimates are obtained by maximizing l(θ). Variances for parameters 

can be obtained by inverting the information matrix I(θ) = –E(∂2l(θ)/∂θ∂θ′). The codes for 

implementing the methods are available at http://www-personal.umich.edu/∼brisa/.

G-E dependence and G-b heteroscedasticity—Our LV models for exposures and 

longitudinal outcome are presented in a general way, allowing for full dependence on the 

genetic factors. To reduce the dimensionality of the parameter space, we may impose a 

certain degree of G-E independence as well as G-b homoscedasticity. These assumptions 

may hold for external exposures (air pollution, heavy metals) and a set of genes unrelated to 

the exposure but may not be so plausible for behavioral exposures/outcomes and genes in 

the same metabolic pathway. The assumption of G-E independence and G-b 

homoscedasticity can potentially boost the power of tests for interaction. However, the 

estimates of interaction may be seriously biased when the underlying assumption is violated 

[27, 40]. In our study, the mean and variance of the subject's birth weight and rate of weight 

gain, as well as the prenatal lead exposure may not all be independent of genetic factors. The 

HFE gene shares a common metabolic pathway with lead exposure [41] and may potentially 

induce higher variance in the outcomes. The G-b heteroscedasticity has not been previously 

discussed in the literature but we consider it possible, since groups defined by G could 

influence not only the outcome mean but also its variance, and, furthermore, misspecifying 

outcome variance when latent predictors are in the model could lead to substantial bias in 

the regression coefficients [32].

It is difficult to determine the plausibility of the G-E dependence and G-b heteroscedasticity 

based on current data. A convenient and automated way is to model varying degrees of 

dependence and use shrinkage to get an estimator that balances bias and efficiency. In our 

study, we will first build the model under the most restrictive assumption that all the 

parameters are homogeneous across genotypes. We use “AI” to denote the assumption of G-

E independence and G-b homoscedasticity

In the second step, we relax all the constraints and build the model under the assumption of 

complete G-E dependence and G-b heteroscedasticity, denoted as “AD”. We consider the 

possibility that the variances of the latent outcomes also depend on gene, i.e., all parameters 

may vary across genetic subgroups.

Clearly, the AD model has many more parameters than the AI model. The AI model may 

improve efficiency for interaction estimates but could introduce bias if the assumed 

independence constraints are incorrect. On the other hand, the problem with the AD model 

is that larger sample sizes are needed to have precise estimates of the parameters of interest. 

If the sample size is modest, we may put constraints on parameters like ΘG. After estimating 
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AI and AD, it is not straightforward to assess relative model fits for these two models. For 

instance, a simple two-stage approach of first testing the plausibility of parameter constraints 

using current data and then proceeding with AI or AD will incur a high Type-I error rate, 

because the study is likely underpowered to detect significant differences across genetic 

subgroups for all parameters. Adaptive shrinkage of the robust AD estimators to efficient AI 

estimators appears to be an attractive alternative.

Shrinkage estimation—We use shrinkage estimation to combine MLE estimates under 

assumptions of AI and AD following Chen et al. [29]. Denoting the two estimators by θÂI 

and θ̂AD, we define

(6)

as the shrinkage estimator (SK). The multivariate shrinkage (MV) weights are KMV = V̂(V̂ + 

ψ̂ψ̂T)−1 with ψ̂ = θ̂AI – θ̂AD. is the estimated asymptotic variance matrix of the estimated 

difference ψ̂. Note that (6) is only defined for common parameters in the two models, and 

KMV is an s × s matrix (s is the dimension of θ̂AI). An alternative way to obtain shrinkage 

weights is to calculate them separately for each parameter so that we only need to deal with 

parameters of primary interest. This is called “component-wise (CW)” shrinkage, whose 

weights (KCW) depend only on the variance and bias related to that component, i.e., 

 [29]. Since the SK depends on two correlated estimators 

θÂD and θ̂AI, its variance is approximated using the multivariate delta method [26, 29]. In a 

given data analysis, the variance can also be straightforwardly obtained via bootstrap.

To understand how the SK works, we need to carefully examine the weights. As we know, 

θ̂AD is unbiased but may not be efficient due to the large number of parameters in the model. 

This is particularly a problem if the sample size is modest. θ̂AI, on the other hand, is usually 

efficient but can be seriously biased if AI is violated. When the bias is large, the weight 

 goes towards zero and one would favor θ̂AD. Otherwise, one will favor the more 

efficient θ̂AI. This is a typical bias-variance tradeoff [28]. The CW shrinkage tends to have 

better efficiency than the MV shrinkage, because KMV uses the full matrix V̂ and large 

sampling errors in the off-diagonals of V̂ outweighs the potential efficiency gain from MV 

shrinkage [29]. Sánchez et al. [26] has shown that in the cross-sectional setting the MV 

shrinkage has larger mean squared error (MSE) despite smaller bias. Given the longitudinal 

setting in our study that leads to a much larger number of parameters and therefore larger 

uncertainty in the off-diagonal elements of V̂, we use CW shrinkage in all our subsequent 

development.

3. Extension to time-varying exposures

In Section 2, we have considered only time-independent exposures. Here we present the 

extension of our method to time-varying exposures while all other notations remain the 

same. For subject i at time tij, let Eij denote a p × 1 vector of observed exposures 

measurements and Uij be an m × 1 vector of latent exposures. Then models (1) and (2) can 

be rewritten as
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(1a)

and

(2a)

Note that, the regression coefficients unrelated to G are the same as those in (1) and (2) as 

we assume the relationship between the observed exposures measurements and the 

underlying latent exposures for the reference genetic subgroup (G = 0) is constant over time. 

Meanwhile, by allowing coefficients ν1j, Λ1j and α1j related to G to vary over time, we 

incorporate the possibility of the time-varying G-E association, i.e., varying effect of genetic 

factors on exposure biomarkers over time. With age, different exposures may be 

metabolized differently inducing such time varying G-E association [18]. The error vectors 

δij and ζij both have mean zero, and their variances can be either time-independent (ΘG and 

ΦG, respectively) as in (1) and (2), or time-varying (ΘG,j and ΦG,j, respectively) depending 

on the application context. However, with moderate sample size, we may have to build more 

parsimonious models. For example, we may constrain ν1j = ν1, Λ1j = Λ1, α1j = α1, ΘG,j = 

ΘG or ΦG,j = ΦG. In this way, we are averaging the G-E association over time.

Given time-varying exposures, the outcome model can be modified as

(3a)

where  (4a) and  (5a). Note that in contrast to 

(3) ∼ (5), we separate the G and U terms from the functional terms involved in the temporal 

growth trajectory and allow separate regression coefficients corresponding to G and U terms 

to vary over time. We can also assume that βG,j, βU,j and βG×U,j follow some specific 

parametric function of time. For example, if we believe there is a linear trend of G × E effect 

over time, we would model βG×U,j to be a linear function of time. Notations of parameters of 

covariates and variance components remain unchanged.

4. Example: Weight growth, prenatal lead exposure, and the HFE gene

We used pooled data from ELEMENT, including three sequentially enrolled longitudinal 

birth cohorts recruited between 1994 and 2005 at maternity hospitals serving low- to 

moderate-income populations in Mexico City [1]. We focused our analysis on children's 

weight as the health outcome, which was measured longitudinally from birth to 48 months. 

Prenatal lead exposure is the main exposure of interest, which has been demonstrated to 

have deleterious effects on birth weight [42] and weight trajectories [1]. Prenatal lead 

exposure biomarkers were collected on the mother and child, including lead concentrations 

in umbilical cord blood and maternal blood at delivery, and maternal bone lead 

concentrations at two bone sites (patella and tibia) [1, 42]. Among these four biomarkers, 

patella lead concentration is viewed as a better indicator of cumulative fetal exposure for 

two reasons: (a) bone lead biomarkers are more indicative of cumulative fetal exposure 
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during pregnancy because blood lead primarily reflects the last three months of exposure 

due to its relatively shorter half-life; (b) patella is preferred over tibia bone lead 

concentration because trabecular bone, such as the patella bone, has a faster turnover 

compared to cortical bone (such as tibia), and thus more closely reflects exposure to the 

fetus during pregnancy [43].

Two known SNPs, C282Y and H63D, on the HFE gene [41] were considered as effect 

modifiers of the lead-growth association. Due to sparsity of data, we applied dominant 

models for genetic susceptibility and created a single indicator variable: zero for wild type 

on both SNPs and one for at least one copy of either of the risk alleles. Although the HFE 

gene has been primarily linked with iron metabolism [41], it has also been shown to modify 

lead absorption in an age-dependent fashion [8, 44]. As such, it is possible that the 

correlations among exposure biomarkers may differ between wild types and variants, 

implying that the exposure model coefficients may differ by genetic subgroup. The HFE 

gene has also been shown to have joint health effects with lead exposure [6, 44].

To be included in this analysis, children must be genotyped, have weight measured at more 

than 2 time points and have at least one of the four prenatal exposures biomarkers (N = 758). 

We focused our analysis on time points at birth and months 4, 12, 18, 24, 30, 36 and 48 

when the cohorts had over 60% complete weight measurements. We followed Afeiche et al. 

[1] in choosing additional covariates based on biological relevance. Missing data on 

covariates was imputed five times [45] and parameter estimates from each imputed dataset 

were combined by standard formulae [46].

The procedure to conduct our analysis can be summarized into the following steps:

1. We defined a latent variable for prenatal lead exposure using the four lead 

biomarkers (Figure 1). Since patella lead is a preferred biomarker of cumulative 

lead exposure during pregnancy as mentioned before, the mean and scale of the 

latent variable are set equal to those of patella lead using the identifiability 

constraints described in Section 2.1.

2. We modeled the weight growth trajectories by regressing weight on time in the 

linear mixed model adjusting for selected covariates. We did not consider the 

genetic factor or lead exposures at this stage. We incorporated functions of t, t2 and 

log(t) (hence K = 3) in the model to capture the time trend of the mean weight 

trajectory, which have been typically used to model growth trajectories in children 

[37]. We further examined the model fit with residual plots.

3. We fit the overall G × E model to the data to examine the marginal G × E effect 

averaged over the whole study period.

4. Given the balanced design with respect to time (except for missed visits), we 

explored the G × E effect for each time point by treating time as dummy variables, 

denoted as the “discrete time G × E model”. Specifically, for subject i with genetic 

category Gi at time j (i = 1, …, 758 and j = 1, …, 8 in our example),
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(7)

where γG,j, γU,j and γG×U,j are regression coefficients for genetic factor Gi, latent 

exposure Ui and the interaction term, respectively, and Xij and γj are vectors of 

covariates (including intercept) and regression coefficients, respectively. The error 

vector ei
′ = (ei1, …, ei8) ∼ N(0, Σ8 × 8), where Σ8 × 8 was unstructured in our 

analysis, based on model fit. By plotting γG×U,j against tj, we found that although 

the outcome model included multiple fk(t)'s (i.e., t, t2 and log(t)), the G × U × T 

term could be described with a simple linear function of time h(t) = t, a subset of 

fk(t)'s. In other applications, it is possible that h(t) is completely different from 

fk(t)'s.

5. We fit the G × E × T model to the data by forcing the coefficients of G × U terms 

corresponding to t2 and log(t) to be zero while retaining all other terms, including 

the G × U term for t, in (5).

Results from the ELEMENT analysis

The weight data at birth is complete while at other ages, the percent of missingness ranges 

from 12.5% to 36.7% (Supplemental Materials, Table S1). The weight increases over time 

but with decreasing rate, and the variance is increasing (Figure 2). By applying the overall G 

× E model, we do not find a significant overall G × E effect (Table 2). However, there is a 

decreasing trend in G × E effect over time when fitting the discrete time G × E model and 

plotting β̂G×U against time (step 3 above, Figure 3). The negative β̂G×U indicates that 

carrying a variant for the HFE gene may exacerbate the deleterious effects of prenatal lead 

exposures on weight growth, particularly after one year from birth. The decreasing trend 

indicates that the degree of exacerbation may escalate over time. Comparing the results from 

the overall G × E model and discrete time G × E model, it is clear that if we ignore the time-

varying component in the G × E effect, we would completely miss the G × E signal.

Guided by the discrete time G × E model, we fitted the G × E × T model with linear T (Table 

2). We found a statistically significant β̂G×U×T, indicating that the modification of lead-

growth association by HFE status is age dependent. The estimates and robust standard errors 

under AI are fairly similar to those under AD, likely implying weak G-E and G-b 

associations. The negative estimates indicate that, on average, the variants compared to wild 

types may suffer from even further reductions in weight gain in association with higher lead 

exposure (i.e., further impairment in growth). Via shrinkage estimation, the further reduction 

in weight gain associated with 10μgPb/g higher patella bone concentration is estimated to 

increase by 96.9 grams every 6 months. In other words, comparing two children that only 

differ in HFE status, if their patella lead level were both to increase by 10μgPb/g, the one in 

the variant group would gain less weight than the one in the wildtype group, and their 

difference in weight gain would increase by 96.9 grams every 6 months. Using appropriate 

linear combinations of β̂G×U and β̂G×U×T, we also calculated estimates for the G × E 

association at each age as shown in Figure 3. Compared to the discrete time G × E model, 

the estimates from the G × E × T model are generally similar, while the standard errors are 
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much smaller, resulting in improved power. This example illustrates the value of thinking 

about time-dependent features in interaction patterns as opposed to an interaction term that 

is assumed to be constant over time.

5. Simulation studies

We carried out simulation studies to assess the bias, efficiency, mean squared error (MSE), 

power and Type-I error properties of our methods. Specifically, we considered three settings 

of simulations where the true models are as follows: 1) the null model of no G × E effect at 

any time point; 2) time-independent G × E effect; and 3) time-varying G × E effect.

5.1 Simulations with time-invariant exposures

We used a sample size of N = 500 that is typical in environmental health studies. The 

genetic subgroup was generated as a binary variable with prevalence 0.3: zero for all 

wildtypes and one for having at least one variant. We simulated four exposure 

measurements, assuming that they measured one latent exposure. The latent exposure, under 

AD, was simulated from N(0, 1) for the wild type group and N(1, 2) for the variant group 

(i.e., α1 = 1, Φ0 = 1 and Φ1 = 2 in (2)), while under AI, N(0, 1) for both groups. The latent 

outcomes were generated as random intercept and random slope for each subject (K = 1 and 

f(t) = t in (3)). The longitudinal outcomes were generated at five equally spaced time points 

(t = 0, …, 4).

Our parameters of interest are βG×U, the baseline difference in exposure effect between 

genetic subgroups, and βG×U×T, the difference in the G × E effect by unit increase of time. 

The true interaction parameters for the three settings were: 1) βG×U = βG×U×T = 0; 2) βG×U 

= 2, βG×U×T = 0; and 3) βG×U = 2, βG×U×T = −1 with the G × U × T term assumed to be 

linear in T, respectively. For all three settings, we investigated the properties of our 

estimators when the underlying data generating mechanism was AI or AD. For Setting 3, we 

further considered two scenarios: 1) data was simulated under G-E independence and G-b 

heteroscedasticity, denoted as “APD1”, to isolate the role of G-b heteroscedasticity alone in 

determining the operating characteristics of the methods; and 2) data was simulated under 

G-E partial dependence (only a subset of exposures interactive with genes) and G-b 

homoscedasticity, denoted as “APD2”. Details regarding the choice of remaining parameters 

and how they varied across genetic subgroups can be found in Supplemental Materials, 

Table S3. For Settings 1 and 2, we fitted the overall G × E model, and for Setting 3, we also 

fitted the G × E × T model. We summarized the results based on 500 replicated datasets.

Simulation results—Table 3 presents the estimates from the overall G × E model for all 

three settings. When there is no interaction in the true model (βG×U = βG×U×T = 0) and the 

data are generated under AI, all methods have acceptable biases and Type-I error rates. 

However, when the data are generated under AD, only the MLE assuming AD and the SK 

retain probability of rejection of a null hypothesis (P(R)) close to 0.05 at the nominal level 

of 0.05. As expected, MLE assuming AI has bias and inflated Type-I error in this scenario. 

When the overall G × E effect exists (βG×U = 2 and βG×U×T = 0), all approaches have power 

of at least 0.75 except MLE assuming AI with data generated under AD. This loss of power 

is primarily due to severe bias in β̂G×U(−36.0%). In the first two settings, the SK performs 
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very similar to the correct estimator, in terms of bias, MSE and power (P(R)). For Setting 3 

(βG×U = 2 and βG×U×T = −1) when the overall G × E model is misspecified, none of these 

approaches have adequate performance.

Table 4 presents the results from fitting the model with linear G × U × T term to the data 

generated in Setting 3. Under data scenario AI or APD1, all approaches have satisfactory 

performance with the correct approach being the most unbiased and efficient. However, 

under data scenario AD or APD2, MLE assuming AI is seriously biased for both βG×U and 

βG×U×T. The similarities between scenarios AI and APD1, and between AD and APD2 

indicate that G-E dependence may be more critical than G-b heteroscedasticity for 

determining the performances of our methods. For each of the four scenarios, the SK 

maintains very acceptable bias and efficiency.

5.2 Simulations with time-varying exposures

We also conducted simulations assuming exposures are measured concurrently with the 

outcome, as postulated in (1a)-(2a). Again we generated outcomes and exposures at five 

time points. We simulated exposures for each time point separately and also incorporated 

time-varying G-E association in the true model: AI for time points 1 and 2, and AD for time 

points 3, 4 and 5 (details on parameter setting can be found in Supplemental Materials, 

Table S3). We set G-b heteroscedasticity for all time points. We considered two situations 

where there was no G × E effect (βG×U = βG×U×T = 0) or there was time-varying G × E 

effect (βG×U = 2 and βG×U×T = −1). Then we applied two types of AD models: one with 

time-varying G-E association (AD1) and the other with time-independent G-E association 

(AD2). We also calculated MLE assuming AI and used shrinkage estimation to combine 

AD1 with AI, denoted as SK1, as well as AD2 with AI, denoted as SK2. As a comparison 

benchmark, we analyzed the data with the correct G-E and G-b association (only possible in 

a simulation study where we know the truth).

Simulation results—Under the setting with no G × E effect, we find all the methods have 

P(R) (Type-I error) close to 0.05 at the significance level of 0.05 (Table 5). However, MLE 

assuming AI, as a parsimonious method with the most restricted set of assumptions, leads to 

large bias for βG×U×T. MLE assuming AD2 also has some bias due to misspecification of 

the G-E association. When there is time-varying G × E effect, we find different results for 

βG×U and βG×U×T. Despite some bias from MLE assuming AI, all other methods show 

satisfactory performance for βG×U. In contrast, the power for βG×U×T is lower (0.60 ∼ 0.76). 

MLEs assuming AI and AD2 yield biased estimates while MLE assuming AD1 has much 

less bias but also reduced power, likely due to the large number of parameters (124 for AD1 

vs. 83 for correct model). SK1 has relatively acceptable performance in bias and power, 

when compared to SK2 and the correct method, which indicates that when dealing with 

time-varying exposures with possible time-varying G-E association, we need to include the 

more flexible model as a component for shrinkage estimation in order to control bias.

6. Discussion

The current study, as an extension of the cross-sectional outcome work by Sánchez et al. 

[26], has multiple strengths. It further shows the advantages of using LV models to reduce 
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dimensionality of correlated exposure variables and longitudinal outcome. It limits the 

number of tests to be conducted and boosts power by using a single integrated model. It also 

has a cohesive interpretation if the existence of latent variable is natural, as is the case for 

blood and bone lead biomarkers in our example. Furthermore, it takes into account the 

possibility of mutual dependence between gene, exposures and outcome. By using shrinkage 

estimation, we avoid testing each assumption separately and still get estimates that retain 

good operating characteristics. The most important contribution is to posit a framework that 

allows time-varying interaction and time varying association. When the G-E dependence 

varies over time, a shrinkage factor that accounts for heterogeneity of the G-E association is 

needed.

Further extensions to accommodate semi- or non-parametric smoothing terms instead of the 

highly parametric longitudinal model we have considered seem a natural continuation of our 

work. The normality assumption on the random effects and errors can also be relaxed to 

incorporate non-normal data. Moreover, the outcome can be multivariate longitudinal [47] 

and one may add another layer of measurement models for the outcome at each time point.

It is also important to consider how to define genetic subgroups to meaningfully stratify on 

genetic risk for a given outcome-exposure association. For the methods presented, genetic 

strata need to be determined a priori, for example, through the quantiles of a combined risk 

index from a pathway or a gene region. In ELEMENT, a very interesting question is how to 

model the mother-child pair of genes together [6]. However, the limited sample size will 

always be an issue if one is trying to have multiple genetic subgroups. Whether a LV model 

can help reduce dimensionality of a correlated gene space is also something to be explored 

in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Table 1

Summary of parameters in Models (1) to (5).

Model/Parameter* Interpretation

Model (1) Measurement model relating observed exposure measurements and latent exposures

 ν0(p × 1) Intercepts of exposure measurements for the genetic reference subgroup

 ν1(p × 1) Difference in intercepts of exposure measurements between genetic subgroups

 Λ0(p × m) Factor loadings for the genetic reference subgroup

 Λ1(p × m) Difference in factor loadings between genetic subgroups

 ΘG(p × p) Covariance matrix for error vector δ, dependent on genetic subgroup G

Model (2) Model for latent exposure given covariates

 α0(m × 1) Intercepts of latent exposure for the genetic reference subgroup

 α1(m × 1) Difference in intercepts of latent exposure between genetic subgroups

 αV(m × q) Association between latent exposure and covariates V

 ΦG(m × m) Covariance matrix for error vector ζ, dependent on genetic subgroup G

Model (3) Model for observed outcome measurements given latent outcomes

 B0i Subject-specific intercept for the health trajectory

 Bki Subject-specific slope for the health trajectory

 σ2 Variance of residual error ε

Model (4)/(5) Structural model linking latent exposures to latent outcomes

 β0,. Mean intercept/slope for the health trajectory in the genetic reference subgroup

 β1,. Difference in mean intercept/slope for the health trajectory between genetic subgroups

 βU,. Association between latent outcomes and latent exposures for the genetic reference subgroup

 βG×U,. Difference between genetic groups in the association between latent outcomes and latent exposures

 βZ,. Association between latent outcomes and covariates Z

 DG (K + 1) × (K + 1) Covariance matrix for random effects ba and bk, dependent on genetic subgroup G

*
Parameters charactering dependence on genetic subgroups are in bold; vectors and matrices have dimension listed.
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Table 2

Parameter estimates and robust standard errors obtained using MLE derived assuming AI and AD, and 

shrinkage estimates (SK) for ELEMENT data. Given the identifiability constrains on the exposure model, 

coefficients represent changes in weight (g) associated with 10μgPb/g higher patella lead level. Models are 

adjusted for maternal age, height, calf circumference, parity, education, marital status, lifestyle and calcium 

treatment, as well as children's gestational age, cohort and repeated measures of height.

Est. method Overall G × E model G × E × T model with linear Ta

β̂U β̂G×U β̂G×U β̂G×U×T

AI 15.2 (27.2) −25.1 (45.1) −20.7 (43.7) −96.6 (43.4)*

AD 17.3 (29.6) −21.6 (47.8) −16.7 (46.6) −97.1 (45.5)*

SK 15.5 (27.4) −24.4 (45.5) −18.0 (45.0) −96.9 (43.9)*

a
T has been rescaled to represent changes per 6 months.

*
p-value < 0.05.
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