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Abstract

Estimating ultrafine particle number concentrations (PNC) near highways for exposure assessment 

in chronic health studies requires models capable of capturing PNC spatial and temporal variations 

over the course of a full year. The objectives of this work were to describe the relationship 

between near-highway PNC and potential predictors, and to build and validate hourly log-linear 

regression models. PNC was measured near Interstate 93 (I-93) in Somerville, MA (USA) using a 

mobile monitoring platform driven for 234 hours on 43 days between August 2009 and September 

2010. Compared to urban background, PNC levels were consistently elevated within 100–200 m 

of I-93, with gradients impacted by meteorological and traffic conditions. Temporal and spatial 

variables including wind speed and direction, temperature, highway traffic, and distance to I-93 

and major roads contributed significantly to the full regression model. Cross-validated model R2 

values ranged from 0.38–0.47, with higher values achieved (0.43–0.53) when short-duration PNC 

spikes were removed. The model predicts highest PNC near major roads and on cold days with 

low wind speeds. The model allows estimation of hourly ambient PNC at 20-m resolution in a 

near-highway neighborhood.
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Introduction

Ultrafine particles (UFP, <100 nm in aerodynamic diameter) may contribute to increased 

risks of respiratory and cardiovascular disease for people living near highways and major 

roadways because they are present at high levels in vehicle exhaust, carry toxic chemicals 

sorbed to their surface, and rapidly cross biological barriers.1–3 One challenge in 

characterizing health risks of near-highway UFP is assessing the spatial and temporal 

variability of UFP with sufficient accuracy to measure associations with health outcomes. In 

studies of acute health effects, UFP exposure is estimated using temporal data from 

centrally-located monitoring sites; however, because the highest concentrations of UFP 

generally occur <200 m from roadways, central-site measurements may underestimate 

exposures for the most highly exposed populations.4,5 Studies of chronic health effects 

require exposure models that describe intra-urban distance-decay gradients and how 

gradients change over time because people move between locations of high and low 

exposures and their integrated exposure may not be directly correlated with annual mean 

residential concentrations. Therefore, in assigning UFP exposures for epidemiological 

studies in urban areas, tools are needed that can accurately predict both the temporal and 

spatial variations of UFP.6

Regression modeling based on air pollution measurements and spatial and temporal 

covariates (land-use regression; LUR) is one approach to estimate traffic-related pollutant 

exposures.7–17 This approach is useful in cases where there is a relatively large amount of 

pollutant data but source emission factors have not been fully characterized and limited 

microscale meteorological data is available. Covariates including densities of traffic, 

population, and land use have been used in regression models to estimate annual-average 

spatial distributions of air pollutants including PM2.5, NO2, and BC at local (<5 km2) to 

regional and international (>10,000 km2) scales.7,8,10–13 Regional UFP models have been 

developed10,18 but only a few studies have reported regression models for UFP in near-road, 

urban neighborhoods.11,14–16 In these studies, near-road UFP models were based on particle 

number concentration (PNC; a proxy for UFP) measurements collected either at fixed 

locations (e.g., residences) over the course of several days or months,8,14,15 or by repeated 

mobile monitoring of an urban area over a single season.11,16 Intensive mobile monitoring, 

which can provide ambient measurements with higher temporal and spatial resolution than is 

typically achieved using only centralized monitoring sites,19–23 has been used to develop 

LUR models.7,11,16 Mobile monitoring in all seasons is necessary to capture the seasonality 

that has been observed in UFP.20,23,24 While models have been used to predict either 

temporal or spatial patterns in UFP distribution, epidemiological studies of urban near-

highway UFP exposure require models that capture both fine-scale temporal changes and 

spatial gradients to reflect variations observed in UFP measurements.

Our goal was to measure PNC with a mobile-monitoring platform over the course of a year 

in a near-highway urban area and develop a PNC model based on temporal (1 hr) and spatial 

(~20 m) covariates to inform exposure estimates. Here we describe (1) the relationship 

between PNC and potential covariates; and (2) the construction and validation of hourly log-

linear PNC regression models.
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Methods

Mobile Monitoring

Mobile monitoring was conducted with the Tufts Air Pollution Monitoring Laboratory 

(TAPL) along a 15.4-km route in a 1.4-km2 area in Somerville, MA (USA) adjacent to 

Interstate 93 (I-93; average daily traffic (ADT) ~150,000 vehicles/day,25 1–5% diesel;26 

Figure 1). I-93 rises from grade to ~6 m above street level and is filled underneath except at 

underpasses. A 3-m-high noise barrier runs along ~400 m of the east side of I-93.23 Two 

state highways run at grade through the study area: a four-lane highway adjacent to I-93 

(Route 38, ADT = 40,000 vpd), and a six-lane highway that crosses underneath I-93 (Route 

28, ADT = 50,000 vpd).25 Local traffic consists of <5% trucks, which travel predominantly 

on Broadway.26 The study area is characterized by the presence of many blocks of ~10-m-

tall houses with 5–10 m between adjacent houses and ~30 m between blocks of houses; the 

configuration of the houses likely impacts dispersion of highway-related PNC.27 The Mystic 

River bounds the northeast edge of the study area.

The TAPL is a recreational vehicle retrofitted with a suite of rapid-response gas- and 

particle-phase instruments, as described in detail elsewhere.23 Monitoring was performed 

along a fixed route on streets both perpendicular and parallel to I-93. Monitoring was 

conducted in 3–6–hr shifts on 43 days between September 2009 and August 2010. The 

TAPL was driven only on non-highway streets at 5–10 m/s to measure local-scale changes 

in pollutant concentrations. Particular effort was made to monitor during the morning rush 

hour because high concentrations and wide areas of elevated PNC are typically observed at 

that time.28–30 Monitoring was conducted in the morning, afternoon, and evening in winter, 

spring, summer, and fall on non-consecutive days to maximize meteorological and traffic 

variability. This strategy spread monitoring times approximately evenly across a full year, 

which decreased the likelihood of high temporal autocorrelation in the dataset and allowed 

model development to neglect autocorrelation issues. PNC was measured by a butanol 

condensation particle counter (CPC 3775, TSI, Shoreview, MN; D50 = 4 nm). Spatial 

coordinates were assigned by matching instrument times to a master clock on a Garmin V 

GPS (manufacturer-specified accuracy = 3–5 m) mounted in the TAPL.

Quality assurance included side-by-side comparisons in a laboratory in Anderson Hall at 

Tufts University, flow checks, and lag-time corrections. Based on decision rules to avoid 

potential self-sampling of exhaust from the mobile laboratory, data were censored for TAPL 

speeds <5 km/hr and wind directions from behind the TAPL (14% of the data were 

censored). This generally happened when the TAPL was stopped at traffic signals (up to 90 

seconds), the majority of which were on Broadway and may have caused model 

underestimates within ~20 m of intersections. PNC spikes due to other vehicles were not 

removed from the dataset.

Regression Model Development

The natural logarithm of PNC, ln(PNC), was used in the model because PNC was 

approximately log-normally distributed. The equation for a log-linear model of PNC is
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(Equation 1)

where βi is a model coefficient for covariate xi and ε is the random normally distributed error 

in the model. Coefficients in this log-linear model can be interpreted as the percent change 

in PNC per unit change in the covariate.

Explanatory variables related to meteorology (wind, temperature, and precipitation), time 

(linear and sinusoidal functions of year, day, and hour), highway traffic, and distances from 

combustion sources were developed. Variables were screened using stepwise regressions to 

maximize correlations (Pearson’s r) and minimize Akaike information criterion (AIC). 

Following the criteria of Henderson et al.,17 entering variables had p<0.05, contributed at 

least 1% to the adjusted R2, and had correlations <0.6 with variables already in the model. 

All modeling was performed in R.31

To describe the functional form of the relationship of variables with PNC, generalized 

additive models (GAM), a type of nonparametric regression model, were produced for each 

variable identified in the screening process.32 Loess smoothing windows between 0.1 and 

0.75 were tested and windows of 0.25 (smooth using the 25% of values closest to each data 

point) were chosen as an interpretable balance between over-smoothing and noise. For those 

relationships that were not well described by linear functions, logarithmic, inverse, square, 

and exponential transformations were tested. Categorical variables were developed and 

included as appropriate, and compared to continuous variables.

Temporal Variables—Hourly-averaged temporal variables were assigned to each 1-

second PNC measurement to match the expected time-step of major changes in temporal 

factors. See Supporting Information Section 1 (S-1) for further discussion on the assumption 

of representativeness within an hour.

Meteorological data collected at nearby stations were expected to explain particle reactivity 

and transport (see S-2 for a description of the meteorological stations). Temperature was the 

main particle reactivity parameter because particle numbers generally increase at low 

temperatures due to increased nucleation or other seasonally-varying factors (e.g., e.g., 

humidity, engine combustion efficiency, and atmospheric mixing height).33,34 which 

decrease the effective air density and in turn decrease overall engine combustion efficiency 

and atmospheric mixing height.33,34 PNC dispersion was parameterized by wind speed, 

wind friction velocity, Monin-Obukhov length, and mixing height. Wind direction was 

described with both trigonometric functions and wind sectors because circular variables 

cannot be directly modeled with a linear function. The first continuous variable 

(Wind_highway) was a transformation of wind direction measured in degrees (wdir, °) 

relative to I-93 (wroad=140°), and had maximum values when the wind was parallel to I-93.

(Equation 2)
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A second continuous variable (Wind_SE) captured the effects of sources other than the 

nearest highway segment by a transformation of wind direction with maximum 

concentration for wind coming from the direction of highest concentrations (wmax, °) and 

zero value for wind blowing toward the direction of highest concentrations.

(Equation 

3)

In addition, wind sectors ranging from 10 to 45 degrees, as have been previously used,35 

were developed to compare to these continuous transformations of wind direction. 

Interactions of wind direction with wind speed were tested using linear regressions and two-

dimensional GAMs.

Temporal traffic variables included hourly speed, total volume, and diesel volume on I-93, 

as well as transformations and ratios of these measurements. Highway traffic volume and 

speed were obtained from MassDOT station #8449 southeast of the study area 

(stakeholder.traffic.com). A similar study of near-highway urban PNC did not include 

highway traffic in final models due to difficulty identifying the relationship of PNC to 

traffic.11 To ensure inclusion of traffic in this model, three traffic categories based on traffic 

volume and speed were defined: “congestion” (<64 km/hr), “typical” (>64 km/hr and >7000 

vehicles/hr), and “low traffic” (>64 km/h and <7000 vehicles/hr). Congested conditions 

generally occurred during rush hours (07:00–09:00 and 16:00–18:00) and low volume 

conditions occurred in the early morning (00:00–03:00).

Models were developed both with and without a day of week variable as a proxy for 

unmeasured weekly variation in fleet mix and local traffic.36 Each of these models has 

different strengths and weaknesses. Including the day of week variable may improve 

generalizability and allow comparison with models from other studies, but may not be valid 

from a purely statistical point of view because the uneven monitoring on different days of 

the week may add day-specific bias or spurious effects into the model. The model without a 

day of week variable avoids over-fitting the model, but may not capture the effects of local 

traffic that is uncorrelated with highway traffic.

Fixed Site—Fixed site data were obtained for the period during which mobile monitoring 

was performed and developed as model inputs. Hourly PNC measurements (CPC 3022A, 

TSI; Dp=7 nm) were obtained from the Harvard stationary monitoring site, which is located 

in Boston ~6.4 km south of the study area. The monitor is on the roof of Countway Library 

at the Harvard School of Public Health, and 51-m horizontally and 20-m vertically from the 

nearest major roadway (~20,000 vehicles/day) and ~3 km from the closest segment of I-93. 

These data were tested (1) as an additional covariate in the model and (2) as a substitute for 

all other temporal variables in the model.

Spatial Variables—I-93 and major roads were the main UFP sources expected to affect 

spatial variability within the study area. Variables were developed for distance, inverse 

distance, and inverse squared distance from I-93 and major roads (road class ≤4), and for the 

road type being monitored (see S-3 for more information). Roads within the highway 
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corridor were not included as major roads because inclusion in both categories would lead to 

unacceptable collinearity. The northeast part of the study area was usually downwind of the 

highway (59% of the year) and the neighborhoods west of the highway had more local 

traffic. To account for these factors, both highway side and upwind/downwind Boolean 

variables were tested. Interactions of distance from the highway corridor with highway side, 

wind direction relative to highway side, and wind speed were tested using two-dimensional 

GAMs and linear models with interaction terms.

Because the mobile monitoring platform moved continuously, measurements were not made 

at any one location for long enough to average out short-term variability in PNC. Short-term 

(<1 min) increases in PNC an order of magnitude above baseline, referred to here as 

“spikes”, were typically caused by a diesel truck or bus in close proximity to the TAPL and 

cannot be predicted based on the variables available for regression. To evaluate their effects 

on the model, we operationally defined spikes as PNC measurements more than two 

standard deviations above the mean for the monitoring hour.19 Censoring of data for PNC 

spikes was done by individual hours to decrease potential bias due to changing background 

PNC levels. The adjusted R2 and parameter coefficients were compared for models both 

with and without spikes.

Results and Discussion

Annual median observed PNC was 50% higher <400 m from I-93 (27,000 particles/cm3) 

compared to the background area >1 km from I-93 (18,000 particles/cm3), with distance-

decay gradients varying depending on traffic and meteorology (Figure 2). Median PNC 

measurements were two-fold higher in the winter (36,000 particles/cm3) than in the summer 

(18,000 particles/cm3). PNC levels were also higher on weekdays and Saturdays compared 

to Sundays, and higher during morning rush hour than later in the day. PNC distance-decay 

gradients from I-93 varied due to contributions from local street traffic. A detailed 

description of the mobile monitoring data is provided in Supporting Information Table S3 

and available elsewhere.23

Covariate Relationships

The most important factors identified by the variable-screening process were wind direction 

and speed, temperature, distance to the nearest major road, and distance to the edge of the 

highway corridor. While linear functions described the relationship of some variables with 

ln(PNC) well (e.g., temperature, cosines of relative wind directions), the relationships of 

some other variables with ln(PNC) could not be linearized (e.g., traffic volume and speed on 

I-93).

Temporal Variables—Parameterization of wind direction was critical because PNC 

varied by as much as 4-fold for different wind directions. A model of ln(PNC) that used only 

continuous wind direction variables had an adjusted R2 of 0.10 and good visual agreement 

with measurements (Figure 3a). The R2 using wind direction relative to I-93 (Equation 2) 

alone was 0.04, and the R2 with wind direction relative to the southeast (Equation 3) alone 

was 0.07. Southeast winds were associated with high PNC levels in all four seasons, all days 

of the week, and all hours of the day.14,23 The effect of high PNC levels under conditions of 
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southeast winds was captured using Equation 3 (Wind_SE) with the wind direction of 

maximum PNC set to wmax=125°. Over the range of Wind_SE, PNC increased by 51% ± 

1% for cold months (November to March) and 69% ± 1% for warm months (April to 

October). For both warm and cold months, the wind was from the southeast ~10% of the 

time; however, no southeast winds were captured before 09:00 in cold months. While the 

variable for winds from the southeast likely captures both temporal and spatial effects (e.g., 

sea breezes common in coastal locations or major transportation corridors serving downtown 

Boston), we were unable to separate those effects with the available parameters.

Relative to these continuous variables, wind sectors increased the model R2 by 0.04 and 

0.01 for 25 and 45-degree sectors, respectively. To ensure that all wind sectors had at least 

one data point, sectors were required to be relatively large (~45 degrees) and therefore had 

little benefit relative to a physically interpretable function. While wind speed and wind 

direction had a statistically significant interaction (p<0.001), an interaction term was not 

included in the model because it did not increase the model R2 or affect the wind speed or 

wind direction coefficients.

Temperature, wind speed, friction velocity, and mixing height were also strong predictors, 

with ln(PNC) decreasing linearly with linear increases in these parameters (Supporting 

Information Figure S1). While solar radiation was a statistically significant predictor of 

ln(PNC) (p<0.001), as shown previously,35 its inclusion did not improve either the root 

mean square error (RMSE) or the model R2 compared to a univariate model including only 

temperature. Monin-Obukhov length was not statistically associated with ln(PNC) (p=0.2). 

Pearson correlations with wind speed were ~0.7 for both friction velocity and mixing height, 

so only one of these three variables should be included in the model. When each was 

individually inserted into the regression model, wind speed, friction velocity and mixing 

height all resulted in equal values of model R2; therefore, since it was the most easily 

obtained of these variables, wind speed was chosen to represent meteorological forcings, 

along with temperature.

The best-performing traffic variable was a categorization of highway traffic as typical, 

congested, or low traffic (Figure 3b). Highway traffic total volume, diesel volume, and 

speed were nonlinearly associated with ln(PNC) (p<0.001; Figure S2). While squaring 

transformations slightly reduced the curvature in functional form, no transformation of 

traffic speed, total volume, or diesel volume captured the sharp increase of PNC with high 

volume and speed. Diesel volume on I-93 was not monotonically related to PNC and was 

unable to predict PNC because it was low compared to gasoline vehicle volume and local 

diesel vehicles had a larger effect than those on the highway. Spikes were measured by the 

mobile lab about every 12 minutes, and on average a truck drives down Broadway every 2–3 

minutes.26 Similarly, ratios of traffic volume to wind speed and distance to the highway, as 

well as transformations of these ratios, were not linearly related to ln(PNC). The relationship 

of traffic speed and volume suggests this nonlinearity may have resulted from an interaction 

effect that was not fully captured due to lack of data for low traffic volumes with low travel 

speeds.
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Typical highway traffic conditions had 19.1% higher PNC than low traffic conditions and 

11.6% lower PNC than congested traffic flow (p<0.001, partial R2= 0.007; Figure 3c). When 

the day of week was removed from the model, the times of low highway traffic had on 

average 30.9% lower PNC than typical traffic conditions while the effect of congestion did 

not change. An alternative to day of week may be a weekday/weekend variable;36 however, 

this would not reflect actual conditions because PNC in Somerville was relatively high on 

Saturdays and low on Sundays. The low coefficient for Fridays likely captures some effects 

of seasonality because the two Fridays with monitoring data were in August and September. 

Future studies testing the day-of-week effect should balance the number of weekdays and 

weekend days to ensure sufficient sampling on each day.

Fixed Site—The Pearson correlation of ln(PNC) between the mobile platform and the 

central site was 0.52. Adding the central site ln(PNC) measurements as a model covariate 

increased the model R2 by 1% and decreased the temperature coefficient by a factor of 1.5. 

Replacing all temporal variables in our model with the central site measurements resulted in 

a model R2 decrease of 6% and a mean square residual increase of 0.1. These results suggest 

that the fixed site captured most of the temporal variability of PNC, and in particular, the 

seasonal variability. The lower model R2 obtained by replacing meteorological and traffic 

variables with PNC measured at the central site suggests that local sources and wind effects 

at the central site were not representative of those in Somerville. The fixed site was not 

included in the model because its inclusion led to high levels of collinearity among temporal 

variables without sufficiently increasing model predictive power.

Spatial Variables—Spatial variables were also important predictors of ln(PNC). The 

relationship of ln(PNC) to distance to I-93 was approximately linear, with the highway 

playing a relatively minor role at greater distances, especially near major roads like 

Broadway (Figure 3d). All tests of linear distance to road variables within the study area 

resulted in negative coefficients, consistent with exponential distance-decay gradients that 

have been reported in the literature.24 Models built using inverse distance and inverse 

squared distance had lower adjusted R2 and higher RMSE than models using a linear 

treatment of distance to the highway. The decay in PNC with increasing distance to the 

nearest major road was comparable to the decay with distance upwind of I-93 (−23.0%/km 

and −20.9%/km, respectively). On average, PNC on major roads was 21% higher than on 

other roads, likely due to traffic signals at intersections and higher levels of local diesel 

traffic. Removing either distance to I-93 or distance to major road from the model did not 

affect the coefficient of the other variable, suggesting that the effect of interactions and 

collinearity on these spatial variables was negligible.

Gradients of PNC east of I-93 tended to be stronger than those west of I-93. Highway side 

and upwind/downwind Boolean variables resulted in identical model R2 and coefficient 

estimates; therefore, the distance upwind and downwind of I-93 were included in the model 

to emphasize wind patterns. The gradients measured in Somerville were less pronounced 

than those reported in other studies (e.g., reference 4) because PNC data from many 

monitoring days throughout the year, representing different wind directions and speeds, 

mixing heights, and source strengths, were averaged together.
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Final Regression Model

The variables described above were incorporated into a regression model with an adjusted 

R2 of 0.43 with day of week or 0.41 without day of week (Table 1). Both temporal and 

spatial variables contributed significantly to the model. All p-values were <0.001 and the 

signs of all coefficients in the model are those that were expected a priori (e.g., higher 

concentrations for higher traffic volumes, colder ambient temperatures, and lower wind 

speeds). The model predictions have good agreement with measurements across spatial and 

temporal PNC trends. PNC predictions and measurements were higher both during cold 

weather and near I-93 for typical morning hours in summer and winter (Figure 4). The mean 

of model predictions of ln(PNC) for all locations tracked the distribution of measurements 

by day (Figure 5).

The model can be used to compare ambient PNC at different times and locations. For 

example, when all other variables were held constant, moving 100 m further downwind of 

the highway resulted in a 4.49% decrease in PNC while moving the same distance from a 

major road only resulted in a 2.30% PNC decrease. On average, moving from the downwind 

side of I-93 in Somerville to the same distance on the upwind side resulted in a 19% 

decrease in PNC.

Sensitivity Analysis and Validation

The adjusted R2 and root mean square error (RMSE) were used as measures of model 

performance (Table 2).17 Both statistics were stable under leave-one-out cross-validation by 

iteratively excluding each monitoring day from the final PNC model (1,720–4,718 points 

per day), suggesting robust PNC estimates with minimal outlier influence. Substituting 

missing meteorological data with imputed values had little effect on the overall model 

(ΔAdj-R2 = −0.002, ΔRMSE = 0.007). Similarly, removing the day of week variable had 

little effect on validation statistics. Predictions were within a factor of two of measured 

values 75% of the time, 13% of predictions were less than half the measured PNC, and 12% 

of predictions were more than twice the measured PNC. The largest under-predictions 

tended to occur on major roads. While the model residuals were approximately normal for 

PNC <105 particles/cm3, they were not normally distributed (Jarque-Bera Normality Test 

p<0.001) mainly due to under-prediction of PNC spikes (Figure S3). Removing spikes (~4% 

of all measurements; see descriptive statistics in Table S4) to evaluate the effect of short-

term sources increased the adjusted R2 from 0.43 to 0.49. Coefficients were mostly 

unchanged (except for a decrease in the coefficient for the categorical variable for whether a 

measurement was from a major road); therefore, we did not remove spikes from the final 

model. Spatial autocorrelation of residuals is discussed in S-4.

This model is novel because it was developed using mobile monitoring data from all four 

seasons. It includes data collected under a wider range in temperature, wind, and traffic 

conditions compared to previous studies of spatial-temporal UFP.11,14–16 As a result, the 

model included temporal factors that were significant in time-series models35 but not 

statistically significant in models based on data collected over shorter time-frames. The 

correlations obtained here are comparable to other hourly, near-highway, urban, PNC 

regression models. Other researchers achieved adjusted R2 of 0.22–0.32 in Brooklyn, NY,11 
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0.36–0.51 in Girona, Spain,15 0.43–0.45 in Southern California,16 and 0.45–0.56 in 

Somerville, MA.14 Fuller et al14 based their model on hourly average PNC at 17 homes in 

the summer and fall. In contrast, we developed our model for a larger study area using 1-

second on-road measurements over the course of a year. The differences in the temporal 

resolution and location of monitoring caused our dataset to have more short-term variability, 

resulting in lower model R2. A more detailed comparison of the methods used in these 

studies is available in Table S5.

Generalizability

An advantage of regression models is that they fit measured values with functions of 

covariates. Their accuracy is determined by representativeness of sampling and appropriate 

selection of covariates, not by emissions inputs, which are often unavailable. In this study, 

mobile monitoring over the course of a year resulted in measurements at more locations than 

could be monitored by fixed sites and under a wider variety of meteorology and traffic 

conditions than could be captured by short-term monitoring. Despite the measurement 

density, the resulting dataset has at least three potential limitations: (1) only three 

monitoring sessions included precipitation events (two snow and one rain), thus biasing the 

data towards dry weather conditions; (2) particles emitted directly by vehicles were not 

distinguished from particles formed as a result of nucleation events; and (3) monitoring was 

not performed to quantify the effect of the noise barrier or highway elevation, which have 

been shown to impact the dispersion of PNC.39–41

Like other air pollutant regression models, this model will be limited in its transferability. 

To date, no UFP regression models have been tested over multiple years or locations. 

Transferability studies of NO2 models have reported similar explanatory variables with 

different variable forms (e.g., traffic buffer size) for different cities.13 Similar results are 

expected for PNC: while important predictor variables and their magnitude are likely to be 

similar for similar locations, additional monitoring will be required to validate regression 

models outside of the model calibration conditions and locations.

The PNC model described here will be used to predict hourly PNC at individual residences 

for an entire year in the Community Assessment of Freeway Exposure and Health 

(CAFEH), a community-based participatory research study of the association between UFP 

exposure and cardiovascular disease risks in adults who live near a highway.42
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Figure 1. 
Map of mobile-monitoring area in Somerville. Continuous traffic counts were recorded by 

MassDOT at the pink cross on I-93. The inset displays the coordinate system showing where 

wind is from.
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Figure 2. 
PNC by distance from the edge of I-93 for (a) April to October (n=154 hr), and (b) 

November to March (n=129 hr). Dashed vertical lines in each panel represent I-93.
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Figure 3. 
Graphical exploration of variables used in the regression model. (a) Transformed wind 

direction variables (dark line) are compared to measurements made by the mobile lab 

(boxplots). (b) Traffic categories (typical, low traffic, congested) are defined based on both 

volume and speed measured at station 8449 on I-93. (c) Boxplot of ln(PNC) by the three 

highway traffic categories defined in (b). (d) GAM of predictions and 95% confidence 

intervals of ln(PNC) used to verify the linear decrease of ln(PNC) with distance from I-93. 

Note that Broadway is a major road that cuts through the study area between 400 m and 

1000 m from I-93.
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Figure 4. 
Comparison of regression model predictions at residences of participants in the CAFEH 

study (triangles) to mobile monitoring measurements (lines) for one winter and one summer 

Wednesday morning with typical traffic: (a) January 6, 2010 07:00–08:00 (−6 °C, 4 m/s 

winds from west-northwest); (b) July 21, 2010 06:00–07:00 (22 °C, <1 m/s winds from 

south-southwest).
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Figure 5. 
Mean of modeled daily ln(PNC) for all locations (blue line) as compared to measurements 

made by the mobile lab (Tukey boxplot, outliers not shown).
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