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Abstract

A critical aspect of air pollution exposure assessment is the estimation of the time spent by 

individuals in various microenvironments (ME). Accounting for the time spent in different ME 

with different pollutant concentrations can reduce exposure misclassifications, while failure to do 

so can add uncertainty and bias to risk estimates. In this study, a classification model, called 

MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and 

outdoors at home, work, school; inside vehicles; other locations) from global positioning system 

(GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were 

compared with 24-h diary data from nine participants, with corresponding GPS data and building 

boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the 

daily time spent by the participants. The capability of MicroTrac could help to reduce the time–

location uncertainty in air pollution exposure models and exposure metrics for individuals in 

health studies.
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INTRODUCTION

Many epidemiological studies have found associations between air pollutant concentrations 

measured at central-site ambient monitors and adverse health outcomes.1 Using central-site 

concentrations as exposure surrogates, however, can lead to exposure misclassification due 

to time spent in various microenvironments (ME) with pollutant concentrations that can be 

substantially different from central-site concentrations.2,3 This exposure misclassification 

can lead to uncertainty and bias to risk estimates.2,3 To reduce exposure misclassification, 

we are developing an air pollution exposure model for individuals (EMI) in health 

studies.4-6 The EMI predicts personal exposures based on outdoor concentrations, 

meteorology, questionnaire information (e.g., building characteristics, occupant behavior 

related to building operation and indoor sources), and time-location information. This study 

describes a critical aspect of EMI: the development and evaluation of a classification model, 

called MicroTrac, that estimates time of day and duration spent by individuals in eight ME 

(indoors and outdoors at home, work, school; inside vehicles; other locations) based on 

global positioning system (GPS) data and geocoded (geographic coordinates expressed as 

latitude and longitude) boundaries of buildings.

Exposure models can account for the variations in the time people spend in different 

locations by using time-weighted pollutant concentrations in each ME.7 For population-level 

exposure assessments, exposure models rely on databases of time–activity diary information 

from other exposure studies,8-10 such as the Consolidated Human Activity Database.11 For 

individual exposure assessments, diaries from the study participants can be used.4,12,13 

However, diaries have limitations, including burden on participants, inaccuracies due to 

recall and reporting errors, and missing data.

To address the limitations of diaries, there is an increasing use of common mobile electronic 

devices such as smartphones, which often have embedded GPS receivers, and dedicated 

GPS dataloggers to collect personal time–location information.14 Some advantages of GPS 

include automated logging, high time resolution, and an electronic format that does not 

require manual coding of handwritten diaries. However, manual processing of GPS data to 

determine time spent in different ME is limited due to several challenges, including (1) data 

sets that are large (potentially thousands of data points per person per day) and 

multidimensional (location, speed, time, satellite signal quality), (2) missing data due to no 

GPS signal reception while inside certain (e.g., steel/concrete) buildings, (3) GPS spatial 

inaccuracies due to temporal and spatial variations in the satellite geometry (i.e., spatial 

distribution of satellites used),15,16 (4) localized transient spatial errors due to signal 

reflection (multipath errors) from nearby objects (e.g., water surfaces, buildings, hills, 

trees),17 and (5) difficulty discriminating among certain ME (e.g., most detached homes, 

townhomes, and low-rise apartments in the United States are wooden structures with no 

substantial indoor/outdoor differences in satellite signal strength). The lack of a consistent 

and comprehensive solution to these problems has limited the use of GPS in personal 

exposure and health studies.18 To address these limitations, we developed MicroTrac, an 

automated classification model for GPS data.
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Using MicroTrac to determine the time spent in different indoor and outdoor locations can 

improve exposure estimates. For outdoor air pollutant concentrations Cout assumed to be at 

steady-state conditions (i.e., short-term changes of concentrations are considered negligible 

compared with long-term average concentrations), the steady-state exposure Etrue can be 

described by:

(1)

where fin is the fraction of time spent indoors and Finf is the fraction of Cout that enters and 

remains airborne indoors (i.e., infiltration factor).7 Setting Finf = 0.56 based on a reported 

median value for airborne particles (diameter = 2.5 μm) for homes,7 Etrue for people who 

spend 30% (fin = 0.3) and 100% (fin = 1.0) of their time indoors are 0.87 and 0.56 times Cout, 

respectively. Using central-site air pollutant concentrations as an exposure surrogate, the 

exposure Ecentral is Cout, which yields relative exposure differences (|Ecentral – Etrue|/Etrue) of 

15% and 79% for fin = 0.3 and 1.0, respectively. This scenario analysis demonstrates that 

exposure differences are greater for people who spend more time indoors, and using 

MicroTrac to account for the time–location of individuals can substantially improve 

exposure assessments.

MicroTrac supports the recommendations of the National Research Council (NRC) report on 

exposure science in the twenty-first century19 to link personal GPS and accelerometry 

(motion sensors) data from mobile electronic devices with exposure and lung dosimetry 

models, respectively. The NRC report recommends applying these sensors and models to 

reduce exposure and dose misclassifications for health studies and to have a critical role in 

processing the large data from ubiquitous sensing networks, which collect personal exposure 

information using citizen scientists.

In this paper, we describe the development and evaluation of MicroTrac. We first describe 

the panel study used to collect GPS data and create time–location diaries. We then describe 

the MicroTrac algorithm and method used for evaluation.

METHODS

Time–Location Panel Study

A panel study consisting of nine participants was conducted by the National Exposure 

Research Laboratory of the US Environmental Protection Agency (EPA). The participants 

lived in central North Carolina and worked at the EPA campus in Research Triangle Park, 

North Carolina. Each participant carried a GPS data logger (model BT-Q1000XT; Qstarz 

International, Taipei, Taiwan) for a continuous 24-h period. Seven participants collected 

GPS data on a workday (five in summer, two in fall), and two participants collected GPS 

data on a non-workday (one in summer, one in fall).

Before each 24-h deployment, the GPS memory was cleared using QTravel software 

(version 1.2; Qstartz International, Taipei, Taiwan), and the battery was fully charged. The 

GPS was programmed using QTravel to sample every 5 s and to collect the time, position 

(latitude, longitude), speed, number of satellites used (NSAT), and position dilution of 
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precision (PDOP, dimensionless value ≥ 1 that indicates accuracy of GPS position due to the 

satellite geometry; larger spatial distributions of satellites used yield smaller PDOP and 

more accurate positions).16 GPS data were acquired,, and each sample was electronically 

marked in the GPS memory as either a scheduled or waypoint GPS sample. A scheduled 

GPS sample was collected automatically based on the programmed settings. A waypoint 

GPS sample was collected manually by pressing the waypoint button on the GPS, which was 

used to create time–location diaries. When transitioning between two ME, the participants 

pressed the waypoint button and manually recorded their corresponding starting and ending 

ME. The sampled data (approximately 17,280 scheduled samples per participant and 13–34 

waypoint samples that varied across participants) were stored in the GPS memory during the 

24-h sampling period and then downloaded and stored using QTravel into two types of GPS 

files: a keyhole markup language (KML) file to view the GPS tracks as overlays in Google 

Earth (version 6.1.0.5001; Google, Mountain View, CA, USA), and a text file for the 

classification algorithm described below.

The time–location diaries were used to determine the time of day and duration that 

participants spent in eight ME. The ME are: (1) indoors at the participant’s home (Home-

In); (2) outdoors near the participant’s home (Home-Out); (3) indoors at the participant’s 

workplace (Work-In); (4) outdoors near the workplace (Work-Out); (5) indoors at the school 

of the participant’s children (School-In); (6) outdoors near the school (School-Out); (7) 

inside a vehicle (In-Vehicle); and (8) Other. Any time spent inside a vehicle, even if at 

Home-Out, Work-Out, or School-Out, was considered to be In-Vehicle. These eight ME are 

the same ME used by MicroTrac.

The accuracy of the time–location diaries (i.e., times when a participant transitioned 

between two ME) was verified manually for each participant’s 24-h GPS data. For each 

waypoint GPS sample collected when entering a building that blocked GPS signal reception 

(e.g., work), the KML files, which overlay the scheduled and waypoint GPS samples in 

Google Earth, were used to verify that the waypoint sample occurred near building 

boundary. For each waypoint GPS sample collected when entering or leaving a vehicle, the 

text files, which chronological list the scheduled and waypoint GPS samples, were used to 

verify that the waypoint sample occurred when speeds changed from driving speeds to 

walking speeds (e.g., In-Vehicle to Home-Out) or vice versa (e.g., Home-Out to In-Vehicle). 

Any suspected diary errors were discussed with the participant. If any diary error was 

confirmed, new 24-h GPS and diary data were collected.

Microenvironment Tracker Algorithm (MicroTrac)

We developed and evaluated an algorithm to determine which one out of the eight ME 

corresponds to the location of an individual at each GPS sampling time. Below, we describe 

the classification model and then the temporal filtering of GPS speed samples, identification 

of GPS samples with poor signal quality (PSQ), and segmentation of building boundaries 

from aerial images. We then describe the method for evaluation of MicroTrac.

Microenvironment Classification Model—Our model is based on the time course of 

GPS position (POS), speed (SPD), and signal quality (NSAT, PDOP) and geocoded 
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boundaries of building rooftops for participant homes, workplaces, and schools. The model 

consists of eight parameters with seven parameters assigned values without using GPS data 

(i.e., no model fitting) and one parameter (PDOP threshold) assigned a value based on GPS 

data. We first describe the classification algorithm for time intervals with GPS samples and 

then describe the algorithm for time intervals with missing GPS samples. The classification 

model was written and evaluated using MATLAB software (version R2011b; Mathworks, 

Natick, MA, USA).

Classification with GPS Samples and Building Boundaries—The details of the 

classification model are shown in the decision tree (Figure 1a) and described in 

Supplementary Information. In summary, to classify a GPS sample as Home-In, there are 

three decision tree paths, which are unique pathways starting at the model inputs and ending 

at the classified ME. For the first decision tree path, the model determines whether the GPS 

position is within the home building boundary. To account for GPS spatial errors and as 

people tend to spend more time indoors than outdoors,20 the model includes a 5-m spatial 

buffer for the home building boundary. The 5-m spatial buffer was assumed to be two times 

the GPS accuracy (2.5 m) specified by the manufacturer (model BT-Q1000XT; Qstarz 

International, Taipei, Taiwan). To account for transient GPS spatial errors >5 m, the model 

includes a 15-s temporal buffer to determine whether any GPS position within 15 s is inside 

the spatial-buffered building boundary. As the temporal buffer can introduce 

misclassifications when a person transitions from indoors to outdoors, a reasonably short 

duration (15 s) was assumed for the temporal buffer.

For the second decision tree path, a GPS sample is classified as Home-In when the GPS 

position is within 1 km of home and the GPS sample has PSQ, which can occur while 

indoors. The 1-km distance from home was assumed based on a reasonable surrounding area 

of home. To account for large transient spatial errors in the GPS position from multipath 

conditions that occur near structures that reflect GPS signals (e.g., tall buildings), the model 

uses a 15-s temporal buffer of the GPS position and PSQ data.

For the third decision tree path, a GPS sample is classified as Home-In when the GPS 

position is within 1 km of home, the GPS filtered speed (FSPD) is <18 km/h, and GPS 

sampling time is when there is no natural light outdoors (DARKNESS; period between 

astronomical dusk and dawn). The DARKNESS condition accounts for any GPS spatial 

errors that may occur when the GPS receiver is not moving for extended periods of time 

(e.g., sleeping). To account for multipath errors that can produce large transient spatial 

errors and large positive speed spikes, the FSPD condition is examined after the temporal-

buffered GPS position and PSQ conditions. The 18-km/h speed threshold for the classifying 

as In-Vehicle was assumed based on an attempt to include slow moving vehicles (i.e., 

vehicle speeds slightly >18 km/h) and to exclude people walking, running, and cycling. We 

assumed the typical speeds for walking, running, and cycling are <18 km/h.

For the work and school ME that have segmented building boundaries, the three paths 

described above for the home ME (Home-In, Home-Out) are used. One exception is the 

DARKNESS condition, which is not included for the work and school MEs.
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If a GPS sample is not classified as a home, work, or school ME, the sample is classified as 

Other when PSQ15s or FSPD <18 km/h. Otherwise, the GPS sample is classified as In-

Vehicle.

Classification with Missing GPS Samples—The details of the classification model 

for missing data are shown in the decision tree (Figure 1b). When the GPS device does not 

receive a sufficiently strong signal from Z4 satellites, no GPS sample is recorded. As GPS 

signals can be attenuated by different building materials (e.g., concrete/steel), the model 

classifies a time interval with missing GPS samples as either Home-In, Work-In, School-In, 

or Other. The model first identifies any missing GPS samples by calculating the time 

difference between each pair of consecutive GPS samples. The number of missing GPS 

samples between consecutive GPS samples is the time difference divided by the GPS 

sampling period (5 s) and then minus one. The model then classifies all consecutive missing 

GPS samples as the same ME. To classify a time interval with missing GPS samples as 

Home-In, the model determines whether any GPS sample within 60 s before the time 

interval with missing GPS samples is classified as Home-In or Home-Out. The 60-s duration 

was assumed for missing GPS samples based on a reasonable period that can account for 

possible misclassifications due to multipath errors immediately before satellite reception is 

lost when entering certain types of buildings. As shown in Figure 1b, a similar method is 

used to classify a time interval with missing GPS samples as Work-In or School-In. A time 

interval with missing GPS samples is classified as Other when no GPS sample within 60 s 

before the time interval is classified as Home-In, Work-In, or School-In.

Temporal Filtering of GPS Speed Samples—A GPS sample is classified as In-

Vehicle based on exceeding a speed threshold. Since GPS speeds are at or near zero during 

brief periods due to stop lights, traffic, and other factors, we applied temporal filtering to the 

GPS speed data to remove negative transient speed spikes. The GPS speed is filtered across 

the entire time course of GPS samples with a temporal filter.21 The filter was designed to 

remove negative speed spikes with durations of approximately ≤2 min. The 2-min duration 

was assumed for the temporal filter based on reasonable waiting periods at traffic lights. The 

details of the filter are described in Supplementary Information. This automatic filtering 

process is implemented in a conservative manner to produce an enhanced speed time course 

with reduced negative transient spikes, while leaving any positive transient speed spikes and 

overall speeds relatively undisturbed.

Identification of GPS Samples with PSQ—The PSQ from objects that obstruct the 

signal from satellites and decrease NSAT can occur outdoors near large tall structures (e.g., 

dense clusters of trees, buildings, hills) and indoors within steel/concrete buildings. Also, 

PSQ can occur when the time-varying positions of the satellites used by the GPS are not 

well distributed across the sky (i.e., poor satellite geometry), which increases PDOP.16 For 

our classification algorithm, a GPS sample is considered PSQ when NSAT≤4 or PDOP 

>3.0. The NSAT threshold was set to 4 as a minimum of four satellites are needed to 

determine positions. The PDOP threshold was set to 3.0 as measured PDOP were 

consistently <2.5 under good signal quality conditions (NSAT >8). When PSQ is detected, 

the GPS sample is classified as the indoor ME (Home-In, Work-In, School-In, or Other) that 
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corresponds to the location (home, work, school, or other) of the previously classified GPS 

sample.

Segmentation of Building Boundaries—To discriminate between GPS positions 

indoors and outdoors at home, work, and school, we created geocoded boundaries for these 

three types of buildings. In this panel study with nine participants, building boundaries were 

marked for nine homes (eight detached homes, one apartment), one workplace (five story 

office complex with five connected buildings), and two schools (one story detached 

buildings visited by two participants to drop off and pick up their children). The outline of 

each building’s rooftop was manually segmented using the “Add Path” tool in Google Earth. 

For the evaluation of MicroTrac, the GPS tracks were not visible during segmentation. In 

Google Earth, the tilt angle was set for a view perpendicular to the ground, and the image 

zoom was adjusted to achieve a large display of the rooftop and a clear view of the rooftop 

edges. Before segmentation, the buildings were identified in the geocoded aerial images of 

Google Earth by entering the building addresses provided by the participants into Google 

Earth and verified by using the KML GPS files to overlay the GPS tracks (displays 

placemarks for the GPS positions and line segments connecting the placemarks in 

chronological order) on the Google Earth images. After the buildings were identified and 

any GPS track overlays were removed, the rooftop boundaries were segmented and stored as 

KML building files for the classification model described below.

Evaluation of MicroTrac Performance

To quantitatively evaluate MicroTrac, we compared the estimated ME at each sampling time 

with its corresponding actual ME, as reported in the time–location diaries. To assess the 

daily differences between the actual and estimated time spent in each ME, we calculated the 

duration and percentage of day in each ME. To evaluate the model error for each ME, we 

determined the number of samples correctly identified as positive (true positive, TP) and 

negative (true negative, TN) and incorrectly identified as positive (false positive, FP) and 

negative (false negative, FN). We also identified the misclassified ME for each FP and FN. 

We then calculated the true positive fraction (TPF = TP/(TP + FN)) and false positive 

fraction (FPF = FP/(TN + FP)) to determine the sensitivity (TPF, proportion of actual 

positives correctly classified) and specificity (1 – FPF, proportion of actual negatives 

correctly classified). The number of FP and specificity provide an assessment of the model’s 

overestimation. The number of FN and sensitivity provide an indication of the model’s 

underestimation. We also calculated the accuracy ((TP + TN)/(TP + TN + FP + FN)) and 

positive predictive value (PPV = TP/(TP + FP)) for each ME.

RESULTS

Summary statistics for each participant are provided for the day type, time spent in each ME, 

duration for missing GPS data, and reason for missing data (i.e., GPS signal obstruction 

from building or time to reacquire satellite signal) in each ME, ME with occurrences of 

PSQ, and the eight types of locations (restaurant, store, park, friend’s home, movie theater, 

doctor’s office, library, fitness club) where participants spent time in the Other ME (Table 

1). For workdays, there were long periods with missing GPS data at Work-In due to building 
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obstruction of signal and short periods of missing GPS data at Work-Out and In-Vehicle due 

to time for GPS to reacquire signal after leaving buildings that obstructed the signal. At 

Other, missing GPS data occurred while at restaurants, stores, movie theater, and doctor’s 

office. Although at Home-In and School-In, there were no missing GPS data but Home-In 

had several occurrences of GPS samples with PSQ. For the GPS data logger, the battery life 

(without recharging) and memory capacity were sufficient for each participant’s 24-h 

sampling period. Also, there were no diary errors observed when we manually verified the 

accuracy of the diaries.

A comparison of the estimated and actual percentages of day in each ME is shown for each 

participant (Figure 2). The largest differences between actual and estimated percentage of 

day were 3.3% (underestimation) at Home-In and 3.4% (overestimation) at Home-Out for 

one participant (Figure 2c). All other differences were ≤1.0%. The model always slightly 

overestimated percentage of day at Work-In, School-In, and Other with median differences 

of 0.3, 0.3, and 0.4%, respectively, due to the time needed to reacquire GPS signal (typically 

2–4 min) after leaving buildings (e.g., work, stores) that block satellite signals. The model 

always slightly underestimated the percentage of day In-Vehicle with median difference of 

0.7%, which was due to vehicle traveling below the speed threshold at the start and end of 

each trip (e.g., entering and leaving parking lots), and time needed to reacquire GPS signal 

while In-Vehicle after leaving buildings with no satellite reception.

A comparison of misclassifications (FN for underestimation and FP for overestimation) for 

each ME is shown across all participants (Table 2). Three MEs (Home-In, Work-Out, In-

Vehicle) had greater FN than FP (underestimation); the other five MEs had greater FP than 

FN (overestimation). There were misclassifications between Home-In and Home-Out, 

between Work-In and Work-Out, and between School-In and School-Out. For In-Vehicle, 

there were FN from the Other ME and one FP when Home-Out and School-Out. For Other, 

there were no FN, and FP when In-Vehicle.

We also evaluated the model by calculating the sensitivity, specificity, accuracy, and PPV 

across all participants for each ME (Table 2). Sensitivities and specificities <100% 

correspond to overestimation and underestimation of the ME, respectively. The lowest 

sensitivities were 60.4% and 73.5% at Work-Out and School-Out, respectively, while the 

other sensitivities were >81.0%. The specificities were ≥99.0%. The accuracy across all 

samples was 99.5%. The lowest accuracy was 98.9% both at Home-In and Home-Out. The 

lowest PPV was 63.0% at School-Out, and the highest PPV was 100.0% In-Vehicle.

We also compared the model performance on workdays and non-workdays. The sensitivities 

on workdays and non-workdays were 98.8% and 98.8% at Home-In, 47.1% and 87.8% at 

Home-Out, 86.8% and 89.3% for In-Vehicle, and 100.0% and 100.0% for Other, 

respectively.

DISCUSSION

Our goal was to develop and evaluate a model to classify GPS samples into eight ME from 

GPS data and building boundaries. The daily estimated ME closely correspond to the actual 
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ME with a mean accuracy of 99.5%. These results demonstrate the capability of using GPS 

data with MicroTrac to estimate time spent in various ME and support the feasibility of 

integrating MicroTrac into individual air pollution exposure models (e.g., EMI).6 Since 

MicroTrac automates the processing of GPS data for ME classification, it could also provide 

a method to support the potentially large GPS data from widespread sensor networks of 

citizen scientists, as recommended by the NRC report on exposure science in the twenty-

first century.19

We can compare the model used to classify GPS samples as indoors and outdoors with 

previously reported ones. In Adams et al.,22 using a geocoded building boundary of a home 

to classify GPS samples as Home-In did not perform well (64.4% sensitivity). In Elgethun et 

al.,23 boundaries of homes and each building entered by participants were used to classify as 

Home-In and Other-In, respectively. Boundaries of each yard at home were used to classify 

as Home-Out. The sensitivities were 84.8% (Home-In), 18.3% (Home-Out) and 45.6% 

(Other-In). In Wu et al.,24 a rule-based classifier identified intervals of GPS samples with 

speeds <3 km/h for a minimum of 1 min (static clusters). A static cluster was then classified 

as indoors based on various criteria (e.g., time includes midnight, duration >2 h, positions 

within 50 m of home). The sensitivities were 84.1% (indoors) and 51.7% (outdoors).

Our model has several novel features for classifying GPS samples as indoors and outdoors. 

First, MicroTrac uses 5-m spatial buffering of the building boundaries to account for the 

spatial inaccuracy of the GPS device. Second, our model uses a 15-s temporal buffer of GPS 

position and PSQ data to account for multipath conditions that occurs near structures that 

reflect GPS signals (tall buildings, dense clusters of trees). Third, for positions within 1 km 

of home and speeds <18 km/h, the astronomical dusk-to-dawn period is used to account for 

possible positional drift errors of GPS that can occur when the GPS is stationary for several 

hours (e.g., sleeping). Using these unique features, the sensitivities of MicroTrac for indoor 

ME were 98.8% (Home-In), 99.9% (Work-In), and 93.1% (School-In) and for outdoor ME 

were 81.4% (Home-Out), 60.4% (Work-Out), and 73.5% (School-Out).

In Adams et al.,22 an alternative method classified GPS and personal temperature samples as 

Home-In and School-In for GPS positions within 30 m of the building centroid and for 

temperatures >15.55 °C (60 °F). The sensitivities for indoor ME were 99.9% (Home-In), 

99.8% (School-In) and for outdoor ME were 65.4% (Home-Out), and 84.6% (School-Out) 

during the winter in Colorado. Indoor/outdoor classification based on a simple temperature 

threshold is limited to days with substantial indoor–outdoor temperature differences,22 and 

can have limited temporal resolution due to the thermal response time of the monitor 

following a temperature change. In Kim et al.,25 NSAT was used for indoor/outdoor 

classification, and classified samples as Home-In when NSAT was <9 and positions were 

within 40 m of home. The sensitivities were 89.3% for Home-In and 86.4% for Other-In. In 

Tandon et al.,26 the signal-to-noise ratio (SNR) was used for indoor/outdoor classification, 

and GPS samples were classified as outdoors when the total SNR of all satellites in view 

exceeded 250. The sensitivity was 82% for children outdoors at child-care centers. For 

indoor/outdoor classification, we tried various thresholds based on indoor–outdoor 

temperature, NSAT, and total SNR of satellites, but none were reliable. In Tandon et al.,26 

personal light samples were used for indoor/outdoor classification and classified as outdoors 
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for light intensities >110 lux. The sensitivity was 74% for children outdoors at childcare 

centers. We decided not to use a light sensor since wearing the device outside of clothing 

and uncovered for extended periods of time to avoid obstructing the light can be 

problematic, as described in Tandon et al.26

We can compare our method used to classify GPS samples as transit (i.e., when not at home, 

work, or school) with previously reported ones. In Adams et al.,22 GPS samples were simply 

classified as transit when not classified at home or school with a sensitivity of 95.3%. In 

Elgethun et al.,23 GPS samples were classified as transit when GPS speeds exceeded 18 

km/h with a sensitivity of 29.6%. In Wu et al.,24 GPS samples were classified into two types 

of transit ME (In-Vehicle, Out-Walking) based on GPS speed and geocoded roadway data. 

Moving periods were identified based on various criteria that include individual speeds >15 

km/h, consecutive samples with speeds >2.5 km/h, and positions within 10 m of a roadway. 

Moving periods were then classified as In-Vehicle when the second highest speed exceeded 

10 km/h and median speed exceeded 5 km/h with a sensitivity of 72.1%; otherwise, Out-

Walking with a sensitivity of 68.4%. In Kim et al.,25 GPS samples classified as outdoors 

(based on NSAT threshold) were further classified as transit when GPS speeds exceed 9 

km/h with a sensitivity of 45.3%. In our model, MicroTrac classified GPS samples as In-

Vehicle when filtered speeds exceed 18 km/h and obtained a sensitivity (87.6%) higher than 

previously reported ones.

Unlike previous reports, our model compares speeds to a threshold only after evaluating 

positions with a spatial buffer (GPS position is within 1 km of a building) and a temporal 

buffer (within 15 s), which helps reduce misclassifications due to any large speed errors 

from multipath interference that can occur soon before entering a large concrete/steel 

building. In addition, the temporal filtering of the GPS speed samples can reduce 

misclassifications while In-Vehicle by accounting for the reduced speed or stopping of the 

vehicle due to various conditions (e.g., traffic congestion, traffic signals, stop signs, 

intersections of roads with high traffic volume). The conservatively implemented temporal 

filter can effectively eliminate negative transient speed spikes, while leaving positive 

transient speed spikes and the overall speeds across time relatively unaffected. The enhanced 

filtered speed time course allows for reduced number of misclassifications as the removal of 

negative speed spikes can reduce the number of false negatives while In-Vehicle.

We can also compare our model used to classify intervals with missing GPS data with 

previously reported ones. In Adams et al.,22 intervals with missing GPS data were classified 

as Home-In or School-In for sampling times during pre-defined home and school periods, 

respectively. Otherwise, the intervals with missing GPS data were classified as the same ME 

as the previously classified GPS sample immediately before satellite reception was lost. In 

Elgethun et al.,23 intervals with missing GPS data were classified as Home-In. Our model 

uses a 15-s temporal buffer for the previously classified GPS samples before satellite 

reception was lost. The temporal buffer is a key feature of our model as misclassifications 

can occur soon before satellite reception is lost due to multipath errors at the entrance of 

large buildings. A temporal buffer can help account for these multipath errors and reduce the 

misclassifications of intervals with missing GPS data.
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Our model can be practically implemented for various applications. First, MicroTrac can be 

integrated within exposure models (e.g., EMI) to estimate exposure metrics for 

epidemiological analyses and risk assessments.6 Second, using MicroTrac with personal 

GPS devices, movement sensors (e.g., accelerometers), air pollutant monitors, and health 

monitors in exposure and health effect studies will allow scientists to link the location and 

activity of study participants with air pollution concentrations and health effects. Using 

smartphones with these data collection capabilities will facilitate and expand the use of 

MicroTrac in these studies and will support community applications of MicroTrac, such as 

alerting susceptible populations (e.g., asthmatics) to behavior or activities that may 

compromise their health. Since the manual segmentation of the building boundaries does not 

require any specialized training and since the Google Earth software is free and publicly 

available, MicroTrac could be used by both researchers and citizen scientists. Finally, 

MicroTrac’s ability to classify time spent inside vehicles can be used to correct physical 

activity information from accelerometers when inside moving vehicles.

MicroTrac could also be applied to improve the time–activity pattern data used for 

population-level exposure assessments. With a high percentage of the US population using 

GPS-enabled smartphones, large sets of GPS data collected with low participant burden 

could be classified in various ME by MicroTrac to increase the sample size and update the 

older diary data in the time–activity databases (e.g., Consolidated Human Activity 

Database),11 which are used for population-level exposure assessments. These updates are 

needed for regions with substantial time–activity pattern changes due to various factors, 

such as large economic, demographic, or population changes. Also, the high accuracy of 

MicroTrac can help improve the accuracy of the time–activity databases that have been 

developed from diaries with possible recall and reporting errors.

Our model evaluation was based on the time–location of adult participants on workdays and 

non-workdays, who live in single family homes and a low-rise apartment building, and work 

in a multi-story office building that are all located in suburban areas. We expect similar 

results in homes, schools, and workplaces with similar building characteristics and located 

in suburban or rural areas. The ability of MicroTrac to predict the time–location of 

individuals in urban areas with high-density high-rise buildings and individuals with more 

dynamic location patterns than working adults (e.g., children) needs to be investigated. To 

address these limitations, we plan to perform additional model evaluation using other panel 

studies, such as the Near-Road Exposures and Effects of Urban Air Pollutants Study 

(NEXUS) in Detroit, Michigan with 139 school-age children with asthma.4 In our study, we 

evaluated the model with data in central North Carolina since we plan to apply MicroTrac 

for cohort health studies with adult participants living and working in the same suburban 

areas.

There are some limitations to our model. First, the model cannot account for time spent 

outdoors within 1 km radius of home between astronomical dusk and dawn due to the 

DARKNESS condition (e.g., walking in neighborhood during the night). However, the 

model does account for time spent inside vehicles within 1 km radius of home between dusk 

and dawn. Second, outdoor home locations <5 m from edge of rooftop (e.g., decks, patios) 

are included within the 5-m buffer of the segmented building boundary and cannot be 
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distinguished from the indoor living space of the home. Third, attached structures with a 

roof (e.g., attached garages, porches) often cannot be distinguished in aerial images from the 

indoor living space of a home and are included within the segmented building boundary. 

Fourth, we were unable to classify GPS samples as Other-In and Other-Out but combined 

these two ME into one (Other). In addition, the model does not use geocoded roadway data 

to determine time spent on specific roads (e.g., interstate highways). MicroTrac could be 

modified to incorporate this additional information. However, this would substantially 

increase the model’s complexity, limit the use of the model to those with specialized 

expertise and software (e.g., geographic information systems), and is beyond the scope of 

this study. Finally, the manual segmentation of boundaries for the buildings of interests 

(e.g., home, work, and school) may not be feasible for large cohort studies (e.g., 100,000 

children in the National Childrens’ Study).27 In these cases, it is possible that automated 

image segmentation algorithms could be implemented.28 Even with these limitations, 

MicroTrac is an improvement from previously reported methods, and its few input 

requirements can facilitate its use for various applications.

The pilot study used to evaluate MicroTrac has some limitations. The panel study of nine 

participants is not large, and all participants were working adults who lived in central North 

Carolina. We plan to further evaluate MicroTrac with larger cohort studies, which include: 

children with asthma who are living in Detroit,4 Michigan, and older adults with 

cardiovascular disease who are living in North Carolina.

There are some key strengths of the pilot study. The GPS data are from a prospective panel 

study using real-world activity patterns, instead of scripted activities. Also, the participant 

diaries used to evaluate MicroTrac are of high quality as the participants understood the 

study goals, followed a strict protocol, and used the clock on the GPS device to record 

electronically the time when transitioning to a different ME. In addition, the accuracy of the 

diaries was verified manually. Obtaining high-quality diaries can be a substantial challenge 

for large cohort studies.

We conclude that our study demonstrates the feasibility of using MicroTrac to estimate time 

of day and duration spent in eight ME from GPS data and building boundaries. Results show 

that for seven workdays and two non-workdays the estimated and actual time spent in the 

ME closely corresponds. This capability could help reduce the time–location uncertainty in 

air pollution exposure models used to predict exposure metrics for individuals in health 

studies and for citizen scientists. MicroTrac could also help improve the time–activity 

databases used for population-level exposure assessments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Decision tree of classification model for GPS samples and building boundaries (a) and for 

time intervals with missing GPS samples (b). For classification of GPS samples (a), 

decisions for home ME (Home-In, Home-Out) include: any GPS position within 15 s inside 

1 km radius from centroid of home (POShome_1 km, 15 s), any GPS position within 15 s inside 

home building boundary with 5 m buffer (POShome_blg, 15 s), time interval between 

astronomical dusk and dawn (DARKNESS), any sample within 15 s with poor signal quality 

(PSQ15 s), current position inside 1 km radius of home (POShome_1 km), and current filtered 
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speed (FSPD) <18 km/h. For work ME (Work-In, Work-Out), decisions include: any 

position within 15 s inside 1 km radius from centroid of work (POSwork_1 km,15 s), any 

position within 15 s inside work building boundary with 5 m buffer (POSwork_blg,15 s), any 

sample within 15 s with poor signal quality (PSQ15 s) when number of used satellites ≤4 or 

position dilution of precision >4, current position inside 1 km radius from centroid of work 

(POSwork_1 km), and current filtered speed (FSPD) <18 km/h. For school ME (School-In, 

School-Out), decisions include: any position within 15 s inside 1 km radius from centroid of 

school (POSschool_1 km,15 s), any position within 15 s inside school building boundary with 5 

m buffer (POSschool_blg,15 s), any sample within 15 s with poor signal quality (PSQ15 s), 

current position inside 1 km radius from centroid of school (POSschool_1 km), and current 

filtered speed (FSPD) <18 kph. For Other and In-Vehicle ME, decisions include: any sample 

within 15 s with poor signal quality (PSQ15 s), and current filtered speed (FSPD) <18 kph. 

For classification of time intervals with missing GPS samples (b), decisions include: any 

ME within 60 s before missing time interval that is classified as Home-In or Home-Out 

(MEHome-In-Out,60 s), Work-In or Work-Out (MEWork-In-Out,60 s), and School-In or School-

Out (MESchool-In-Out,60 s).

Breen et al. Page 16

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2014 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Estimated and actual percentage of day in the eight ME for each participant (a–i). The nine 

participants (a–i) correspond to participants 1–9 shown in Table 1, respectively. Percentage 

values are shown for each bar for quantitative comparison between estimated and actual 

differences.
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