Oxford University Press

Phylogenetic Variation in the Silicon Composition of Plants

M. J. HODSON, P. J. WHITE, [...], and M. R. BROADLEY

Additional article information

Abstract

Background and Aims Silicon (Si) in plants provides structural support and improves tolerance to diseases, drought and metal toxicity. Shoot Si concentrations are generally considered to be greater in monocotyledonous than in non-monocot plant species. The phylogenetic variation in the shoot Si concentration of plants reported in the primary literature has been quantified.

Methods Studies were identified which reported Si concentrations in leaf or non-woody shoot tissues from at least two plant species growing in the same environment. Each study contained at least one species in common with another study.

Key Results Meta-analysis of the data revealed that, in general, ferns, gymnosperms and angiosperms accumulated less Si in their shoots than non-vascular plant species and horsetails. Within angiosperms and ferns, differences in shoot Si concentration between species grouped by their higher-level phylogenetic position were identified. Within the angiosperms, species from the commelinoid monocot orders Poales and Arecales accumulated substantially more Si in their shoots than species from other monocot clades.

Conclusions A high shoot Si concentration is not a general feature of monocot species. Information on the phylogenetic variation in shoot Si concentration may provide useful palaeoecological and archaeological information, and inform studies of the biogeochemical cycling of Si and those of the molecular genetics of Si uptake and transport in plants.

Keywords: Biogeochemistry, fertilizer, phytoliths, silica, transporter, uptake

INTRODUCTION

Silicon is the second most abundant element in the soil after oxygen (reviewed by Epstein, 1999; Richmond and Sussman, 2003). Most Si is present in the soil as insoluble oxides or silicates, although soluble silicic acid occurs in the range of 0·1–0·6 mm. Silicon is also one of the most abundant mineral elements in plant tissues and shoot concentrations in excess of 10 % d. wt have been reported (Epstein, 1999). Plants growing under natural conditions do not appear to suffer from Si deficiencies. However, Si-containing fertilizers are routinely applied to several crops including rice (Pereira et al., 2004) and sugar cane (Savant et al., 1999) to increase crop yield and quality. Increased Si supply improves the structural integrity of crops and may also improve plant tolerance to diseases, drought and metal toxicities (reviewed by Epstein, 1999; Richmond and Sussman, 2003; Ma, 2004). For example, Si deposition in the cell walls of root endodermal cells may contribute to the maintenance of an effective apoplastic barrier and thereby improve plant resistance to disease and drought stresses (Lux et al., 2002, 2003a, b; Hattori et al., 2005), whilst intra- and extracellular deposition of aluminosilicates in roots and shoots is thought to protect some species from potential Al toxicity (Hodson and Evans, 1995; Hodson and Sangster, 1999; Britez et al., 2002; Jansen et al., 2003; Wang et al., 2004).

Early studies of Si in plants noted that species of Poaceae contained between 10 and 20 times the concentration of Si found in non-monocotyledonous species (de Saussure, 1804; Jones and Handreck, 1967). Recent reviews report that Si accumulation is, in general, higher in monocot than in non-monocot species (Epstein, 1999; Richmond and Sussman, 2003). However, detailed sampling of specimens from botanical gardens by Takahashi and colleagues (reviewed in Ma and Takahashi, 2002, and references therein) indicates that Si accumulation is largely restricted to primitive land plants and to certain monocot clades, namely the Poaceae, Cyperaceae and Commelinaceae. There is also evidence from these detailed studies that Si may accumulate in certain dicot clades such as the Urticaceae and Cucurbitaceae. In this study, the phylogenetic variation in shoot Si concentration amongst plant species has been quantified by analysing all of the appropriate literature data that could be sourced. These include the extensive data compiled by Takahashi and colleagues (Ma and Takahashi, 2002, and references therein). Using a recent consensus angiosperm phylogeny, it was thus possible to test the hypothesis that high shoot Si concentration is a general feature of monocot species, and it was also possible to identify Si accumulation features in several other well-represented clades of plant species.

MATERIALS AND METHODS

Data from 125 studies, contained in 54 papers in the primary literature, were identified that reported Si concentrations of leaf or non-woody shoot tissues in at least two species growing in the same environment, and which contained at least one species in common with another study (studies listed in the Appendix; additional information is available online at http://aob.oxfordjournals.org). Wherever possible, species nomenclature was based on the original study. Where taxonomic uncertainties occurred, the closest species match was inferred. Angiosperm species nomenclature and familial assignment/informal groupings were based on the United States Department of Agriculture (USDA) National Genetic Resources Program. Germplasm Resources Information Network (GRIN) (http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl) and the Angiosperm Phylogeny Group classification (APG, 1998). Non-angiosperm species nomenclature and family assignment was based on information obtained from (a) The Flowering Plant Gateway (http://www.csdl.tamu.edu/FLORA/newgate/gateopen.htm); (b) The International Plant Names Index (http://www.ipni.org/index.html); or (c) The National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov).

The mean relative shoot Si concentration of each species across all studies was estimated. To adjust for differences in shoot Si concentration between studies, a residual maximum likelihood (REML) procedure was used. All methods have been described previously (Broadley et al., 2003). Briefly, the REML procedure adjusts for differences in between-study variances and means in order to generate an overall treatment mean, which in this case is the shoot Si concentration for each species, i.e. species means are effectively averaged across studies. Since the REML fitting procedures can produce negative treatment means, species Si concentrations were considered as relative values on a linear scale. Estimates of variation in shoot Si concentration were simultaneously fit to a variance components model of [study+(group/order/family/genus/species)]. To test for significant differences between species classified by their higher-level phylogenetic position, one-way ANOVA was performed on restricted subsets of the data. All statistical analyses were performed using GenStat (Release 6.1.0.200, VSN International, Oxford, UK).

RESULTS AND DISCUSSION

Seven hundred and thirty-five species were sampled from 125 studies (Table 1; additional information is available online at http://aob.oxfordjournals.org), including 600 species of angiosperms, 67 gymnosperms, 59 ferns (Polypodiophyta), five clubmosses (Lycopodiophyta), two horsetails (Equisetophyta), one liverwort (Marchantiophyta) and one moss (Bryophyta). Within a variance components model of [study+(group/order/family/genus/species)], group and order accounted for 67 % of the variation in relative shoot Si concentration (Table 2). The remaining variation was attributed to within-order (17 %) and to between-study (16 %) variance components. Thus, high-level phylogenetic position influences the shoot Si concentration of plants. This observation is consistent with literature and experimental studies of other elements including Ca, K, Mg (Broadley et al., 2003, 2004; White and Broadley, 2003; White, 2005), Ni and Zn (Broadley et al., 2001). In contrast, variation in the relative shoot concentrations of N, P (Broadley et al., 2004) and Se (White et al., 2004) is dominated by species-level variance components, and thus there is no evidence that the tissue concentration of these elements differs systematically between groups of species according to their phylogenetic position.

Table 1.
Mean relative shoot Si concentration of 735 plant species. Data are from 125 studies, contained in 54 papers in the primary literature, in which Si concentrations of leaf or non-woody shoot tissue were reported. Each study included at least two plant ...
Table 2.
Variance components model of shoot Si concentrations, based on a meta-analysis of primary data from 125 studies, contained in 54 papers in the primary literature, in which Si concentrations of leaf or non-woody shoot tissue were reported

Across all plant species, relative shoot Si concentration varied from −2·139 in Colysis wrightii (Polypodiaceae) to 8·769 in Arundinaria gigantea (Poaceae); the mean was 0·722 (Table 1 and Fig. 1). Negative relative shoot Si concentration values can arise as a consequence of adjusting for between-study variation during REML fitting procedures. Mean relative shoot Si concentrations of some fern species from the study of Ma and Takahashi (2002) formed a distinct distribution peak in the low relative shoot Si concentration range (Fig. 1, inset). However, since the mean relative shoot Si concentrations adjusted for differences between studies using the REML procedure corresponded closely to the arithmetic mean shoot Si concentration across all studies (Fig. 2), and since there was a minimal ‘study’ variance component (Table 2), data from Ma and Takahashi (2002) were retained in subsequent analyses.

Fig. 1.
Ranked mean relative shoot Si concentration in 735 species of plants based on data from 125 independent studies in 54 papers in the primary literature. A residual maximum likelihood (REML) procedure was used to adjust for differences in shoot Si concentration ...
Fig. 2.
The arithmetic mean shoot Si concentration as a function of mean relative shoot Si concentration, adjusted for differences in shoot Si concentration between studies using a residual maximum likelihood (REML) procedure. Data are based on 125 independent ...

Mean relative shoot Si concentrations differed significantly between the seven groups of plant species [one-way ANOVA, F6,728 = 18·11, P < 0·001, residual mean square (r.m.s.) = 1·053; Fig. 3]. Shoot Si concentration declined in the order liverworts > horsetails > clubmosses >mosses > angiosperms > gymnosperms > ferns. Notable Si accumulators included Equisetaceae species Equisetum arvense (3·992) and Equisetum hyemale (2·917). However, non-vascular plant species were poorly represented in this study and any inferences about the general Si biology of these groups are not possible without further representation in the analysis.

Fig. 3.
Mean (± s.e.m.) relative shoot Si concentration of seven groups of plants (one-way ANOVA, F6,728 = 18·11, P < 0·001, residual mean square = 1·053). Silicon concentrations in leaf or non-woody shoot tissues of 735 ...

Relative shoot Si concentrations were, in general, low in angiosperms, gymnosperms and ferns. However, there was substantial variation in shoot Si concentration within these well-represented groups. The 59 species of ferns sampled in this study were assigned to 14 families representing seven orders (Table 1). The relative shoot Si concentration of ferns ranged from −2·139 in Colysis wrightii (Polypodiaceae) to 1·352 in Athyrium filix-femina (Woodsiaceae). Although there were no significant differences in mean relative shoot Si concentration between fern orders (one-way ANOVA, F6,52 = 1·29, P > 0·05, r.m.s. = 2·448), there were differences in the mean relative shoot Si concentration between the seven fern families sampled from the best-represented fern order (Aspleniales; one-way ANOVA, F6,36 = 4·27, P < 0·01, r.m.s. = 2·729). There were notable differences in relative shoot Si concentration between species in the Woodsiaceae (0·59, n = 11) and in the Dryopteridaceae (–1·68, n = 19).

The 67 species of gymnosperms sampled in this study were assigned to nine families representing five orders (Table 1). The relative shoot Si concentration of gymnosperms ranged from −0·078 in Ephedra sinica (Ephedraceae) to 4·512 in Abies pectinata (Pinaceae). There were no significant differences in mean relative shoot Si concentration between gymnosperm orders (one-way ANOVA, F4,62 = 0·46, P > 0·05, r.m.s. = 0·387). Further, there were no significant differences in the mean relative shoot Si concentration between the five gymnosperm families sampled from the best-represented gymnosperm order (Pinales; one-way ANOVA, F4,56 = 0·01, P > 0·05, r.m.s. = 0·428). In the three well-represented families from this order, mean relative shoot Si concentrations were 0·333 (Taxodiaceae, n = 6), 0·379 (Cupressaceae, n = 10) and 0·387 (Pinaceae, n = 43).

The 600 species of angiosperms sampled in this study were assigned to 114 families of plants representing 44 orders/families unassigned to order (Table 1). These comprised 34 non-monocot and ten monocot (five commelinoid and five non-commelinoid) clades. Mean relative shoot Si concentrations differed significantly between these 44 clades (one-way ANOVA, F43,556 = 5·17, P < 0·001, r.m.s. = 0·76; Fig. 4). Within non-monocot angiosperms, notable low relative shoot Si concentrations occurred amongst Brassicales (0·010, n = 9), Aquifoliales (0·102, n = 3), Cornales (0·196, n = 4) and Fabales (0·263, n = 36) species. High relative shoot Si concentrations were observed in species of Saxifragales (1·351, n = 5), with notable Si accumulation in two species of Crassulaceae (Rhodiola linearifolia, 2·679; Sedum hybridum, 3·329). High relative shoot Si concentrations were also observed in several species of Fagales (0·786, n = 25) including Fagus sylvatica (6·089) and Quercus spp. from the Fagaceae family, in the Rosales (0·764, n = 25) including species from the Celtidaceae, Elaeagnaceae, Ulmaceae and Urticaceae families, in the Asterales (e.g. Helianthus spp.), and in the Caryophyllales (Polygonum spp.). There was intermediate-to-high relative shoot Si concentration in the basal angiosperm groups, although these groups were poorly represented in the analysis (Magnoliales 0·578, n = 4; Laurales 0·592, n = 4; Piperales 0·617, n = 2; Nymphaeaceae 0·685, n = 1; Schisandraceae 1·209, n = 1).

Fig. 4.
Mean (±s.e.m.) relative shoot Si concentration in 44 angiosperm clades (representing orders or unassigned families; one-way ANOVA, F43,556 = 5·17, P < 0·001, residual mean square = 0·76). Data were obtained from ...

Within monocots, shoot Si concentration was substantially lower in non-commelinoid monocot species than in commelinoid monocots (Fig. 5). Indeed, three of the four angiosperm orders containing the lowest shoot Si concentrations were the non-commelinoid monocot orders Acorales (–0·028, n = 2), Liliales (0·055, n = 3) and Asparagales (0·081, n = 24). In contrast, the well-replicated commelinoid monocot orders Arecales (1·204, n = 9) and Poales (1·554, n = 189) had consistently high relative shoot Si concentrations. The few species sampled from other commelinoid monocot clades had low relative shoot Si concentrations, similar to species in non-commelinoid monocot clades, e.g. species of Bromeliaceae (0·199, n = 2) and Commelinales (0·292, n = 1). Thus, from the available data in the published literature, it is concluded that high shoot Si concentration is not a general feature of monocots.

Fig. 5.
Percentage frequency distribution of mean relative shoot Si concentration of 600 species of angiosperms classified into commelinoid monocot (continuous line), non-commelinoid monocot (dashed line), or non-monocot (dotted line) groupings.

The main products of Si accumulation are the phytoliths, or silica bodies, which infill the cell walls and lumina of certain cells in plant tissues (Prychid et al., 2004). The shapes and sizes of these phytoliths contain considerable taxonomic information (Powers, 1992; Prychid et al., 2004) and are increasingly being used in both palaeoecological (e.g. Parker et al., 2004) and archaeological (e.g. Ishida et al., 2003) research, since they provide useful information on past vegetation, agriculture and food. Notably, Prychid et al. (2004), working on phytolith systematics in monocots, suggested that silica accumulation was confined to the commelinoid monocots, with the single exception of the Orchidaceae. Since Piperno (1988, tables 2.2–2.4) found that phytolith production was closely related to plant Si content, the observation of Prychid et al. (2004) is consistent with this analysis of published shoot Si data, subject to the caveat that only two Orchidaceae species were represented in the present data set. Thus, this analysis of published shoot Si data indicates which phylogenetic groups are most likely to contain species that are good phytolith producers. Further, this analysis also indicates that shoot Si content, and thus phytolith production, will be influenced more by the higher-level phylogenetic position of a plant rather than by environmental effects such as water availability, temperature, and Si availability in the soil, although environmental effects will influence phytolith production under some circumstances (e.g. Rosen and Weiner, 1994).

In addition to providing useful potential palaeoecological and archaeological information, knowledge of phylogenetic variation in shoot Si accumulation may also inform studies of the biogeochemical cycling of Si, and those of the molecular genetics of Si uptake and transport in plants. For example, Carnelli et al. (2001) estimated the annual contribution of alpine plant communities to the Si biogeochemical cycle in alpine environments and, unsurprisingly, observed that grasslands were the greatest silica producers. Relative Si production in other plant communities could be estimated by multiplying the mean relative shoot Si concentration of each plant phylogenetic grouping represented (e.g. plant family), by the percentage abundance for each group.

To date, Si transporters have only been located in diatoms (Hildebrand et al., 1997). However, rice (a heavy Si accumulator with a mean relative shoot Si concentration of 4·167) has recently become a model plant for the study of Si uptake and transport in vascular plants (Ma et al., 2002, 2004; Mitani and Ma, 2005). Since a rice mutant with markedly decreased Si uptake compared with its wild type has recently been identified (Ma et al., 2002), it seems likely that Si transporter(s) in higher plants will be isolated in due course. The present data will facilitate comparative functional genetic analysis of these transporters (e.g. Mitani and Ma, 2005), by allowing closely related target species with contrasting Si accumulation patterns to be identified for gene/trait association analysis.

There are many phylogenetic groups of plant species that are not represented in this study. To remedy this, further field surveys or comparative experiments are needed and potential sampling strategies are described in Broadley et al. (2003). In the case of Si, field surveys are likely to yield more appropriate information than laboratory experiments for two reasons. First, it has been shown that relative shoot Ca and Mg data are broadly consistent between experimental and field conditions (Broadley et al., 2003, 2004). Since plant-available soil Si is likely to vary less than plant-available soil Ca and Mg between sites, and since there is a relatively small effect of site on relative shoot Si concentration, it is a reasonable (and testable) assumption that field data will correspond in relative terms to comparative experimental data. The second reason is that it is easier and cheaper to sample large numbers of species from their natural habitats—or from botanical collections—than to grow them experimentally from seeds or cuttings. Once further data are collected, it will be possible (1) to determine precisely where Si accumulation traits diverge within commelinoid monocots, (2) to test which of the non-vascular plant groups are characterized by high Si accumulation, and (3) to identify if distinct ordinal/family-level Si accumulation traits occur in groups of species not currently represented in the present data set.

SUPPLEMENTARY INFORMATION

Online at http://aob.oxfordjournals.org provides raw shoot/leaf Si concentrations on a dry weight basis of 735 plant species sampled from 125 studies, contained in 54 papers in the primary literature (full references in the Appendix), in which Si concentrations of leaf or non-woody shoot tissue were reported.

APPENDIX

This Appendix provides data sources for meta-analysis to calculate mean relative shoot Si concentration in plants. Study numbers, in square brackets, are cited in Table 1 and in Supplementary Information.

Barbehenn RV. 1993. Silicon: an indigestible marker for measuring food consumption and utilization by insects. Entomologia Experimentalis et Applicata 67: 247–251. [1]

Bartoli F, Beaucire F. 1976. Accumulation du silicium dans les plantes vivantes en milieux pédogénétiques tempérés aérés. Comptes rendues de l'Academie des Sciences, Paris 282: 1947–1950. [2, 3, 4]

Bertrand G, Ghitescu V. 1934. Sur la composition élémentaire de quelques plantes cultivées. Comptes rendues de l'Academie des Sciences, Paris 199: 1269–1273. [5]

Bezeau LM, Johnston A, Smoliak S. 1966. Silica and protein content of mixed prairie and fescue grassland vegetation and its relationship to the incidence of silica urolithiasis. Canadian Journal of Plant Science 46: 625–631. [6, 7]

Bilbro JD, Undersander DJ, Fryrear DW, Lester CM. 1991. A survey of lignin, cellulose, and acid detergent fiber ash contents of several plants and implications for wind erosion control. Journal of Soil and Water Conservation 46: 314–316. [8, 9, 10, 11]

Blank RR, Allen F, Young JA. 1994. Growth and elemental content of several sagebrush-steppe species in unburned and post-wildfire soil and plant effects on soil attributes. Plant and Soil 164: 35–41. [12, 13]

Butler JD, Hodges TK. 1967. Mineral composition of turfgrasses. HortScience 2: 62–63. [14]

Carnelli AL, Madella M, Theurillat J-P. 2001. Biogenic silica production in selected alpine plant species and plant communities. Annals of Botany 87: 425–434. [15]

Cooper HP, Paden WR, Garman WH, Page NR. 1948. Properties that influence availability of calcium in the soil to plants. Soil Science 65: 75–96. [16]

Cornelissen JHC, Thompson K. 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytologist 135: 109–114. [Si data from experiments in paper provided by J. H. C. Cornelissen, personal communication] [17, 18]

Cowgill UM. 1989. The chemical and mineralogical content of the plants of the Lake Huleh Preserve, Israel. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences 326: 59–118. [19]

de Bakker NVJ, Hemminga MA, Van Soelen J. 1999. The relationship between silicon availability, and growth and silicon concentration of the salt marsh halophyte Spartina anglica Plant and Soil 215: 19–27. [20]

Ellis JR, Watson DMH, Varvel GE, Jawson MD. 1995. Methyl-bromide soil fumigation alters plant-element concentrations. Soil Science Society of America Journal 59: 848–852. [21, 22]

Fu F, Akagi T, Yabuki S, Iwaki M. 2001. The variation of REE (rare earth elements) patterns in soil-grown plants: a new proxy for the source of rare earth elements and silicon in plants. Plant and Soil 235: 53–64. [23, 24]

Gadallah FL, Jefferies RL. 1995. Forage quality in brood rearing areas of the lesser snow goose and the growth of captive goslings. Journal of Applied Ecology 32, 276–287. [25]

Geis JW. 1973. Biogenic silica in selected species of deciduous angiosperms. Soil Science 116: 113–130. [26]

Geis JW. 1978. Biogenic opal in three species of Gramineae. Annals of Botany 42: 1119–1129. [27]

Genßler L. (unpublished data, courtesy of Northrhein-Westfalian State Agency for Ecology, Soil and Forestry, Germany). [28]

Grosse-Brauckmann E. 1953. Uber die kieselsaureaufnahme von pflanzen nach dungung mit kohlensaurem kalk. Zeitschrift fur Pflanzenernahrung und Dungung in der Bodenkunde 62: 19–24. [29–32]

Hodson MJ, Sangster AG. 1998. Mineral deposition in the needles of white spruce [Picea glauca (Moench.) Voss]. Annals of Botany 82: 375–385. [33, 34]

Hodson MJ, Sangster AG. 2002. X-ray microanalytical studies of mineral localization in the needles of white pine (Pinus strobus L.). Annals of Botany 89: 367–374. [33, 34] [PubMed]

Hodson MJ, Williams SE, Sangster AG. 1997. Silica deposition in the needles of the gymnosperms. I. Chemical analysis and light microscopy. In: Pinilla A, Juan-Tresserras J, Machado M. eds. The state-of-the-art of phytoliths in soils and plants, Madrid, Spain: Monograph 4, Centro de Ciencias Medioambientales, 123–133. [35]

Hogenbirk JC, Sarrazin-Delay CL. 1995. Using fuel characteristics to estimate plant ignitability for fire hazard reduction. Water, Air and Soil Pollution 82: 161–170. [36]

Höhne H. 1963. Der mineralstoff- und stickstoffgehalt von waldbodenpflanzen in abhangigkeit vom standort. Archiv fur Forstwesen 12: 791–805. [37–51]

Höhne H, Richter B. 1981. Untersuchungen über den mineralstoff- und stickstoffgehalt von farnkräutern. Flora 171: 1–10. [52, 53]

Johnston A, Bezeau LM, Smoliak S. 1967. Variation in silica content of range grasses. Canadian Journal of Plant Science 47: 65–71. [54–64]

Jones LHP, Handreck KA. 1967. Silica in soils, plants, and animals. Advances in Agronomy 19: 107–149. [65]

Kalisz PJ, Stone EL. 1984. The longleaf pine islands of the Ocala National Forest, Florida: a soil study. Ecology 65, 1743–1754. [66, 67]

Klein RL, Geis JW. 1978. Biogenic silica in the Pinaceae. Soil Science 126: 145–156. [68]

Kolesnikov MP, Gins VK. 2001. Forms of silicon in medicinal plants. Applied Biochemistry and Microbiology 37: 616–620. [69, 70] [PubMed]

Lanning FC. 1966. Silica and calcium deposition in the tissues of certain plants. Advancing Frontiers of Plant Science 13: 55–66. [71, 72]

Lanning FC, Eleuterius LN. 1981. Silica and ash in several marsh plants. Gulf Research Reports 7: 47–52. [73]

Lanning FC, Eleuterius LN. 1983. Silica and ash in tissues of some coastal plants. Annals of Botany 51: 835–850. [74–78]

Lanning FC, Eleuterius LN. 1985. Silica and ash in tissues of some plants growing in the coastal area of Mississippi, USA. Annals of Botany 56: 157–172. [79]

Lanning FC, Eleuterius LN. 1987. Silica and ash in native plants of the central and south eastern regions of the United States. Annals of Botany 60: 361–375. [80, 81]

Lanning FC, Eleuterius LN. 1989. Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Annals of Botany 63: 395–410. [82]

Ma JF, Takahashi E. 2002.Soil, fertilizer, and silicon research in Japan. Elsevier: Amsterdam. [83, 84]

McManus WR, Robinson VNE, Grout LL. 1977. The physical distribution of mineral material on forage plant cell walls. Australian Journal of Agricultural Research 28: 651–662. [85]

Nakanishi T, Onishi R, Hodson MJ, Akagi T. 2003. Aluminium/silicon interactions in broad-leaved trees and shrubs. Poster presented at the Fifth Keele Meeting on Aluminium in Stoke-on-Trent, UK. (Feb. 2003). [86]

Pahkala K, Pihala M. 2000. Different plant parts as raw material for fuel and pulp production. Industrial Crops and Products 11: 119–128. [87]

Pereira CEDB, Felcman J. 1998. Correlation between five minerals and the healing effect of Brazilian medicinal plants. Biological Trace Element Research 65: 251–259. [88] [PubMed]

Reay PF, Bennett WD. 1987. Determination of amorphous silica and total silica in plant materials. Analytica Chimica Acta 198, 145–152. [89, 90]

Robbins CT, Mole S, Hagerman AE, Hanley TA. 1987. Role of tannins in defending plants against ruminants: reduction in dry matter digestion? Ecology 68: 1606–1615. [91]

Saijonkari-Pahkala K. 2001. Non-wood plants as raw material for pulp and paper. Agricultural and Food Science in Finland 10, Suppl. 1: p. 101, Dissertation, Helsinki University. [92, 93]

Schnug E, von Franck E. 1985. Untersuchungen zur Silizium-Versorgung von Kulturpflanzen in Schleswig-Holstein. Zeitschrift für Pflanzenernährung und Bodenkunde 148: 1–9. [94–96]

Smith GS, Nelson AB, Boggino EJA. 1971. Digestibility of forages in vitro as affected by content of ‘silica’. Journal of Animal Science 33: 466–471. [97] [PubMed]

Street JR. 1974.The influence of silica concentration on the chemical composition and decomposition rates of turfgrass tissue and water absorption rates among three turfgrass species. PhD Thesis, Ohio State University. [98–102]

Taber HG, Shogren D, Lu G. 2002. Extraction of silicon from plant tissue with dilute HCl and HF and measurement by modified inductive coupled argon plasma procedures. Communications in Soil Science and Plant Analysis 33: 1661–1670. [103]

Tirtapradja H. 1971. Quantitative investigations of silica cells in leaves and culms of Festuca pratensis Huds. and F. arundinacea Schreb. Angewandte Botanik 45: 231–247. [104, 105]

Tyler G. 1971. Distribution and turnover of organic matter and minerals in a shore meadow ecosystem. Studies in the ecology of Baltic sea-shore meadows IV. Oikos 22: 265–291. [106]

Van der Vorm PDJ. 1980. Uptake of Si by five plant species as influenced by variations in Si-supply. Plant and Soil 56: 153–156. [107, 108]

Wallace A. 1989. Relationships among nitrogen, silicon, and heavy metal uptake by plants. Soil Science 147: 457–460. [109–122]

Wallace A, Romney EM, Mueller RT. 1976. Nitrogen-silicon interaction in plants grown in desert soil with nitrogen deficiency. Agronomy Journal 68: 529–530. [123, 124]

Wilding LP, Drees LR. 1971. Biogenic opal in Ohio soils. Soil Science Society of America, Proceedings 35: 1004–1010. [125]

Supplementary Material

Content Select:
Supplementary Data:

Acknowledgments

We thank D. Bowdery, J. H. C. Cornelissen, L. Genßler, D. Hart, C. Korndörfer, G. Korndörfer, K. Pahkala and H. G. Taber for providing unpublished data, clarifying data in their publications, and giving us some useful leads. Unfortunately, we were unable to use all of the data provided, as we could not locate overlaps with species in the main data set, but this has been kept on record for the future. This paper is dedicated to Dr Dafydd Wynn Parry who first introduced one of us (M.J.H.) to silicon research, who wrote many fine papers on this topic in Annals of Botany, and who still takes a keen interest in all things siliceous.

Article information

Ann Bot. 2005 Nov; 96(6): 1027–1046.
Published online 2005 Sep 21. doi:  10.1093/aob/mci255
PMCID: PMC4247092
1School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK
2Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
3Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
*For correspondence. E-mail ku.ca.mahgnitton@yeldaorb.nitram
Received 2005 Apr 7; Revised 2005 Jun 8; Accepted 2005 Jul 13.
Articles from Annals of Botany are provided here courtesy of Oxford University Press

LITERATURE CITED

  • APG. 1998. An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85: 531–553.
  • Britez RM, Watanabe T, Jansen S, Reissmann CB, Osaki M. 2002. The relationship between aluminium and silicon accumulation in leaves of Faramea marginata (Rubiaceae). New Phytologist 156: 437–444.
  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ. 2003. Variation in the shoot calcium content of angiosperms. Journal of Experimental Botany 54: 1431–1446. [PubMed]
  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ. 2004. Phylogenetic variation in the shoot mineral concentration of angiosperms. Journal of Experimental Botany 55: 321–336. [PubMed]
  • Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ. 2001. Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytologist 152: 9–27.
  • Carnelli AL, Madella M, Theurillat J-P. 2001. Biogenic silica production in selected alpine plant species and plant communities. Annals of Botany 87: 425–434.
  • Epstein E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50: 641–664. [PubMed]
  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor Physiologia Plantarum 123: 459–466.
  • Hildebrand M, Volcani BE, Gassmann W, Schroeder JI. 1997. A gene family of silicon transporters. Nature 385: 688–689. [PubMed]
  • Hodson MJ, Evans DE. 1995. Aluminium/silicon interactions in higher plants. Journal of Experimental Botany 46: 161–171.
  • Hodson MJ, Sangster AG. 1999. Aluminium/silicon interactions in conifers. Journal of Inorganic Biochemistry 76: 89–98.
  • Ishida S, Parker AG, Kennet D, Hodson MJ. 2003. Phytolith analysis from the archaeological site of Kush, Ras al Khaimah, United Arab Emirates. Quaternary Research 59: 310–321.
  • Jansen S, Watanabe T, Dessein S, Smets E, Robbrecht E. 2003. A comparative study of metal levels in leaves of some Al-accumulating Rubiaceae. Annals of Botany 91: 657–663. [PMC free article] [PubMed]
  • Jones LHP, Handreck K. 1967. Silica in soils, plants and animals. Advances in Agronomy 19: 107–149.
  • Lux A, Luxova M, Abe J, Morita S, Inanaga S. 2003a. Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant and Soil 255: 85–91.
  • Lux A, Luxova M, Abe J, Tanimoto E, Hattori T, Inanaga S. 2003b. The dynamics of silicon deposition in the sorghum root endodermis. New Phytologist 158: 437–441.
  • Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y. 2002. Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiologia Plantarum 115: 87–92. [PubMed]
  • Ma JF. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50: 11–18.
  • Ma JF, Takahashi E. 2002.Soil, fertilizer, and silicon research in Japan. Amsterdam: Elsevier.
  • Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, Yano M. 2004. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology 136: 3284–3289. [PMC free article] [PubMed]
  • Ma JF, Tamai K, Ichii M, Wu GF. 2002. A rice mutant defective in Si uptake. Plant Physiology 130: 2111–2117. [PMC free article] [PubMed]
  • Mitani N, Ma JF. 2005. Uptake system of silicon in different plant species. Journal of Experimental Botany 56: 1255–1261. [PubMed]
  • Parker AG, Eckersley L, Smith MM, Goudie AS, Stokes S, Ward S, White K, Hodson MJ. 2004. Holocene vegetation dynamics in the north eastern Rub' al-Khali desert, Arabian Peninsula: a phytolith, pollen and carbon isotope study. Journal of Quaternary Science 19: 665–676.
  • Pereira HS, Korndörfer GH, Vidal AD, de Camargo MS. 2004. Silicon sources for rice crop. Scientia Agricola 61: 522–528.
  • Piperno DR. 1988.Phytolith analysis. An archaeological and geological perspective. London: Academic Press.
  • Powers AH. 1992. Great expectations: a short historical review of European phytolith sytematics. In: Rapp Jr G, Mulholland SC, eds. Phytolith systematics—emerging issues Advances in Archaeological and Museum Science 1: 15–35.
  • Prychid CJ, Rudall PJ, Gregory M. 2004. Systematics and biology of silica bodies in monocotyledons. Botanical Review 69: 377–440.
  • Richmond KE, Sussman M. 2003. Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology 6: 268–272. [PubMed]
  • Rosen AM, Weiner S. 1994. Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science 21: 125–132.
  • de Saussure T. 1804.Recherches chimiques sur la végétation. Paris: Nyon.
  • Savant NK, Korndörfer GH, Datnoff LE, Snyder GH. 1999. Silicon nutrition and sugarcane production: a review. Journal of Plant Nutrition 22: 1853–1903.
  • Wang YX, Stass A, Horst WJ. 2004. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiology 136: 3762–3770. [PMC free article] [PubMed]
  • White PJ. 2005. Calcium. In: Broadley MR, White PJ, eds. Plant nutritional genomics. Oxford: Blackwell, 66–86.
  • White PJ, Broadley MR. 2003. Calcium in plants. Annals of Botany 92: 487–511. [PMC free article] [PubMed]
  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, et al. 2004. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana Journal of Experimental Botany 55: 1927–1937. [PubMed]

Table 1.

Mean relative shoot Si concentration of 735 plant species. Data are from 125 studies, contained in 54 papers in the primary literature, in which Si concentrations of leaf or non-woody shoot tissue were reported. Each study included at least two plant species growing in the same environment, and each study contained at least one species in common with another study. A residual maximum likelihood procedure was performed on the 1066 linked data to estimate the mean relative shoot Si concentration of species, adjusted for differences between studies.

Group
Order
Family
Species
Mean relative shoot Si concentration
Ranking
Study number (full reference in Appendix)
AngiospermAcoralesAcoraceaeAcorus calamus−0·0585783
AngiospermAcoralesAcoraceaeAcorus gramineus0·0029183
AngiospermAlismatalesAlismataceaeSagittaria lancifolia0·44233774
AngiospermAlismatalesAlismataceaeSagittaria trifolia0·29226083
AngiospermAlismatalesAraceaeAmorphophallus rivieri−0·0585883
AngiospermAlismatalesAraceaePistia stratiotes0·07214583
AngiospermAlismatalesAraceaeZamioculcas zamiifolia0·52836571
AngiospermAlismatalesCymodoceaceaeHalodule beaudettei0·99953079
AngiospermAlismatalesJuncaginaceaeTriglochin maritima0·56537820, 106
AngiospermAlismatalesJuncaginaceaeTriglochin striata1·03354078
AngiospermAlismatalesRuppiaceaeRuppia maritima1·77965379
AngiospermApialesApiaceaeAmmi visnaga0·72946219
AngiospermApialesApiaceaeConium maculatum−0·0685483
AngiospermApialesApiaceaeFerula varia1·06955669
AngiospermApialesApiaceaeFoeniculum vulgare0·62340319
AngiospermApialesApiaceaeLilaeopsis chinensis2·24268274
AngiospermApialesAraliaceaeAralia cordata−0·0187583
AngiospermApialesAraliaceaeHydrocotyle bonariensis0·51336478
AngiospermApialesAraliaceaePanax ginseng0·10216183
AngiospermApialesAraliaceaePolyscias filicifolia0·35829471
AngiospermApialesPittosporaceaePittosporum tobira0·04211586
AngiospermAquifolialesAquifoliaceaeIlex aquifolium0·0029283
AngiospermAquifolialesAquifoliaceaeIlex integra0·18220486
AngiospermAquifolialesAquifoliaceaeIlex latifolia0·12217386
AngiospermArecalesArecaceaePhoenix dactylifera0·17219783
AngiospermArecalesArecaceaePhoenix roebelenii0·20221983
AngiospermArecalesArecaceaeRhapis humilis0·42232983
AngiospermArecalesArecaceaeTrachycarpus fortunei1·31259783
AngiospermArecalesArecaceaeWashingtonia filifera1·73865071
AngiospermArecalesArecaceaeCaryota mitis1·59863671
AngiospermArecalesArecaceaeSabal etonia1·91066366
AngiospermArecalesArecaceaeSabal minor1·03654376
AngiospermArecalesArecaceaeSerenoa repens2·44369166, 79
AngiospermAsparagalesAgavaceaeAgave americana0·04211683
AngiospermAsparagalesAgavaceaeHosta longissima−0·0088283
AngiospermAsparagalesAgavaceaeYucca aloifolia0·05612776
AngiospermAsparagalesAgavaceaeYucca filamentosa−0·0187683
AngiospermAsparagalesAlliaceaeAllium fistulosum0·07214683
AngiospermAsparagalesAmaryllidaceaeCrinum asiaticum−0·0784983
AngiospermAsparagalesAmaryllidaceaeLycoris radiata−0·0884783
AngiospermAsparagalesAmaryllidaceaeZephyranthes candida0·0029383
AngiospermAsparagalesAnemarrhenaceaeAnemarrhena asphodeloides−0·0187783
AngiospermAsparagalesAsparagaceaeAsparagus cochinchinensis0·15219183
AngiospermAsparagalesAsparagaceaeAsparagus officinalis0·34128169, 83
AngiospermAsparagalesAsphodelaceaeAloë arborescens0·06213283
AngiospermAsparagalesConvallariaceaeAspidistra elatior−0·0386583
AngiospermAsparagalesConvallariaceaeConvallaria majalis0·43233383
AngiospermAsparagalesConvallariaceaePolygonatum odoratum−0·0088383
AngiospermAsparagalesConvallariaceaeRohdea japonica0·15219283
AngiospermAsparagalesConvallariaceaeSansevieria trifasciata−0·0884883
AngiospermAsparagalesConvallariaceaeSmilacina japonica0·44233883
AngiospermAsparagalesHemerocallidaceaeHemerocallis fulva0·08214883
AngiospermAsparagalesIridaceaeIris ensata0·05212383
AngiospermAsparagalesIridaceaeIris florentina−0·0187883
AngiospermAsparagalesIridaceaeIris setosa0·08214983
AngiospermAsparagalesOrchidaceaeBletilla striata0·37230183
AngiospermAsparagalesOrchidaceaeSpiranthes sinensis−0·0386683
AngiospermAsteralesAsteraceaeAchillea millefolium1·43861336
AngiospermAsteralesAsteraceaeAnaphalis margaritacea−0·1924336
AngiospermAsteralesAsteraceaeArtemisia absinthium0·22222783
AngiospermAsteralesAsteraceaeArtemisia cana0·2632507
AngiospermAsteralesAsteraceaeArtemisia frigida0·5733807
AngiospermAsteralesAsteraceaeArtemisia gnaphalodes0·1201716
AngiospermAsteralesAsteraceaeArtemisia maritima0·0029483
AngiospermAsteralesAsteraceaeArtemisia tridentata0·66543112, 13
AngiospermAsteralesAsteraceaeAster laevis0·2602436
AngiospermAsteralesAsteraceaeAster macrophyllus0·69844636
AngiospermAsteralesAsteraceaeAster tenuifolia0·03010875, 77
AngiospermAsteralesAsteraceaeAster tripolium0·45734620
AngiospermAsteralesAsteraceaeBaccharis halimifolia0·03210983
AngiospermAsteralesAsteraceaeBaccharis trimera0·36229688
AngiospermAsteralesAsteraceaeBoltonia asteroides1·24258574
AngiospermAsteralesAsteraceaeBorrichia frutescens0·55637678, 79
AngiospermAsteralesAsteraceaeCentaurea iberica0·70945119
AngiospermAsteralesAsteraceaeChamomilla recutita0·06213383
AngiospermAsteralesAsteraceaeChrysanthemum coronarium0·08215083
AngiospermAsteralesAsteraceaeChrysanthemum morii0·24323690
AngiospermAsteralesAsteraceaeConyza canadensis0·63541219
AngiospermAsteralesAsteraceaeEclipta erecta0·77147219
AngiospermAsteralesAsteraceaeErigeron crispus0·60839219
AngiospermAsteralesAsteraceaeEupatorium fortunei0·27225383
AngiospermAsteralesAsteraceaeGrindelia squarrosa0·71745882
AngiospermAsteralesAsteraceaeHelianthus angustifolius1·12756882
AngiospermAsteralesAsteraceaeHelianthus annuus1·876661107, 108
AngiospermAsteralesAsteraceaeHelianthus atrorubens1·04754782
AngiospermAsteralesAsteraceaeHelianthus maximilianii2·6076968
AngiospermAsteralesAsteraceaeHelianthus tuberosus2·74770482
AngiospermAsteralesAsteraceaeInula graveolens0·77347319
AngiospermAsteralesAsteraceaeInula helenium0·76947169
AngiospermAsteralesAsteraceaeInula viscosa0·67843219
AngiospermAsteralesAsteraceaeIva frutescens0·90650876
AngiospermAsteralesAsteraceaeLactuca serriola0·79247819
AngiospermAsteralesAsteraceaeLeontodon hispidus0·23023118
AngiospermAsteralesAsteraceaeMegalodonta tripartita0·72445919
AngiospermAsteralesAsteraceaePicris echioides0·70945019
AngiospermAsteralesAsteraceaePluchea purpurascens0·39230875
AngiospermAsteralesAsteraceaePolymnia uvedalia0·49936176, 81
AngiospermAsteralesAsteraceaePulicaria dysenterica0·61839719
AngiospermAsteralesAsteraceaeSenecio fuchsii0·53036837, 42, 44, 45
AngiospermAsteralesAsteraceaeSeriphidium maritimum0·65742720
AngiospermAsteralesAsteraceaeSolidago sempervirens0·41232374
AngiospermAsteralesAsteraceaeSonchus oleraceus0·68944019
AngiospermAsteralesAsteraceaeTrilisa odoratissima0·63941579
AngiospermAsteralesAsteraceaeXanthium strumarium0·70844919
AngiospermAsteralesLobeliaceaeLobelia cardinalis0·22222575
AngiospermBrassicalesBataceaeBatis maritima0·40932179
AngiospermBrassicalesBrassicaceaeArmoracia rusticana−0·0585983
AngiospermBrassicalesBrassicaceaeBrassica alba0·22623065
AngiospermBrassicalesBrassicaceaeBrassica napus−0·116455, 93
AngiospermBrassicalesBrassicaceaeBrassica rapa−1·9021393, 94, 95, 96
AngiospermBrassicalesBrassicaceaeHirschfeldia incana0·74046419
AngiospermBrassicalesBrassicaceaeNasturtium officinale0·83048770
AngiospermBrassicalesBrassicaceaeWasabia japonica0·04211783
AngiospermBrassicalesTropaeolaceaeTropaeolum majus−0·0785083
AngiospermCaryophyllalesAmaranthaceaeAlternanthera sessilis0·83749219
AngiospermCaryophyllalesAmaranthaceaeAmaranthus albus0·62540419
AngiospermCaryophyllalesAmaranthaceaeAmaranthus gracilis0·61939919
AngiospermCaryophyllalesAmaranthaceaeAmaranthus graecizans0·60038819
AngiospermCaryophyllalesAmaranthaceaeAmaranthus retroflexus0·75846919
AngiospermCaryophyllalesAmaranthaceaeAmaranthus spp.2·6076978
AngiospermCaryophyllalesAmaranthaceaeAmaranthus viridis0·05212483
AngiospermCaryophyllalesAmaranthaceaeAtriplex canescens0·3572938
AngiospermCaryophyllalesAmaranthaceaeAtriplex littoralis0·34728320
AngiospermCaryophyllalesAmaranthaceaeAtriplex nuttallii0·3933117
AngiospermCaryophyllalesAmaranthaceaeAtriplex portulacoides0·49736020
AngiospermCaryophyllalesAmaranthaceaeAtriplex prostrata0·34728420
AngiospermCaryophyllalesAmaranthaceaeAtriplex rosea0·69544319
AngiospermCaryophyllalesAmaranthaceaeChenopodium album0·42132819, 75
AngiospermCaryophyllalesAmaranthaceaeChenopodium murale0·72446019
AngiospermCaryophyllalesAmaranthaceaeChenopodium opulifolium0·66543019
AngiospermCaryophyllalesAmaranthaceaeEurotia lanata0·3933127
AngiospermCaryophyllalesAmaranthaceaeKochia scoparia0·9675238
AngiospermCaryophyllalesAmaranthaceaeSalicornia bigelovii0·62940879
AngiospermCaryophyllalesAmaranthaceaeSalicornia europaea0·34728220
AngiospermCaryophyllalesAmaranthaceaeSalicornia virginica0·28925779
AngiospermCaryophyllalesAmaranthaceaeSalsola kali1·0175358
AngiospermCaryophyllalesAmaranthaceaeSuaeda maritima0·46735120
AngiospermCaryophyllalesCaryophyllaceaeDianthus superbus−0·0386783
AngiospermCaryophyllalesCaryophyllaceaeSaponaria officinalis0·17219883
AngiospermCaryophyllalesCaryophyllaceaeSpergularia media0·34728520
AngiospermCaryophyllalesMolluginaceaeGlinus lotoides0·63140919
AngiospermCaryophyllalesPlumbaginaceaeLimonium carolinianum0·24723873
AngiospermCaryophyllalesPlumbaginaceaeLimonium vulgare0·34728620
AngiospermCaryophyllalesPolygonaceaePolygonum acuminatum0·74046519
AngiospermCaryophyllalesPolygonaceaePolygonum arenastrum0·61439419
AngiospermCaryophyllalesPolygonaceaePolygonum aviculare1·70964669
AngiospermCaryophyllalesPolygonaceaePolygonum fagopyrum−0·021745
AngiospermCaryophyllalesPolygonaceaePolygonum hydropiper0·05212583
AngiospermCaryophyllalesPolygonaceaePolygonum lapathifolium0·65342419
AngiospermCaryophyllalesPolygonaceaePolygonum patulum0·61539519
AngiospermCaryophyllalesPolygonaceaePolygonum punctatum1·27959079
AngiospermCaryophyllalesPolygonaceaePolygonum salicifolium0·60539019
AngiospermCaryophyllalesPolygonaceaePolygonum senegalense0·62040019
AngiospermCaryophyllalesPolygonaceaeRumex dentatus0·60739119
AngiospermCaryophyllalesTamaricaceaeTamarix chinensis0·44233983
AngiospermCaryophyllalesTamaricaceaeTamarix jordanis0·64541819
AngiospermCommelinalesCommelinaceaeTradescantia ohiensis0·29226183
AngiospermCornalesCornaceaeAlangium platanifolium0·15218886
AngiospermCornalesCornaceaeCornus stolonifera0·35029026
AngiospermCornalesHydrangeaceaeHydrangea macrophylla0·33227883, 86
AngiospermCornalesHydrangeaceaePhiladelphus satsumi−0·0486083
AngiospermCucurbitalesCucurbitaceaeBenincasa hispida0·32227183
AngiospermCucurbitalesCucurbitaceaeCitrullus lanatus0·837493103
AngiospermCucurbitalesCucurbitaceaeEcballium elaterium0·47235383
AngiospermCucurbitalesCucurbitaceaeLuffa acutangula0·42233083
AngiospermDipsacalesCaprifoliaceaeSymphoricarpos occidentalis0·5403716
AngiospermDipsacalesValerianaceaeValeriana officinalis0·70945269
AngiospermEricalesClethraceaeClethra alnifolia1·19958179
AngiospermEricalesCyrillaceaeCliftonia monophylla0·41932779
AngiospermEricalesEricaceaeArctostaphylos uva-ursi0·32227315
AngiospermEricalesEricaceaeCalluna vulgaris0·7294633, 15, 37
AngiospermEricalesEricaceaeCeratiola ericoides0·30926579
AngiospermEricalesEricaceaeEmpetrum nigrum0·39231015
AngiospermEricalesEricaceaeErica canaliculata0·06213483
AngiospermEricalesEricaceaeLoiseleuria procumbens0·45334315
AngiospermEricalesEricaceaeLyonia ferruginea0·57838166
AngiospermEricalesEricaceaePieris japonica0·06213186
AngiospermEricalesEricaceaeRhododendron ferrugineum0·32227415
AngiospermEricalesEricaceaeRhododendron japonicum0·32227283
AngiospermEricalesEricaceaeRhododendron pulchrum0·15218986
AngiospermEricalesEricaceaeVaccinium myrtillus0·0821473, 15, 40, 43, 44, 46, 49, 50
AngiospermEricalesEricaceaeVaccinium uliginosum0·35028815
AngiospermEricalesEricaceaeVaccinium vitis-idaea0·32227515
AngiospermEricalesPolemoniaceaePhlox subulata1·01253283
AngiospermEricalesPrimulaceaeGlaux maritima1·063551106
AngiospermEricalesPrimulaceaePrimula veris0·70945369
AngiospermEricalesStyracaceaeStyrax japonicus0·13217986
AngiospermEricalesTernstroemiaceaeCleyera ochnacea0·10216086
AngiospermEricalesTernstroemiaceaeTernstroemia japonica0·12217486
AngiospermEricalesTheaceaeCamellia japonica0·02210583, 86
AngiospermEricalesTheaceaeCamellia sasanqua0·11716883, 86
AngiospermEricalesTheaceaeEurya japonica0·12217586
AngiospermEricalesTheaceaeThea sinensis−0·0257223, 83
AngiospermFabalesFabaceaeAlbizia julibrissin0·0029583
AngiospermFabalesFabaceaeAlhagi mannifera0·63841419
AngiospermFabalesFabaceaeCajanus cajan1·5776338
AngiospermFabalesFabaceaeCercis canadensis0·35029126
AngiospermFabalesFabaceaeDesmodium uncinatum−0·4333585
AngiospermFabalesFabaceaeGalega orientalis0·10816487, 92
AngiospermFabalesFabaceaeGleditsia triacanthos0·26224926
AngiospermFabalesFabaceaeGlycine max1·39961021, 22, 107, 108
AngiospermFabalesFabaceaeGlycine wightii−0·4833485
AngiospermFabalesFabaceaeGymnocladus dioicus0·36029526
AngiospermFabalesFabaceaeHedysarum americanum0·2502396
AngiospermFabalesFabaceaeLathyrus ochroleucus0·4103226
AngiospermFabalesFabaceaeLotus corniculatus−0·0765318, 36
AngiospermFabalesFabaceaeLupinus argenteus0·4503416
AngiospermFabalesFabaceaeLupinus nanus0·27725630, 32
AngiospermFabalesFabaceaeMedicago sativa−0·228425, 85, 93
AngiospermFabalesFabaceaeMelilotus albus0·70444719
AngiospermFabalesFabaceaePhaseolus atropurpureus−0·4333685
AngiospermFabalesFabaceaePhaseolus vulgaris0·949519123, 124
AngiospermFabalesFabaceaePisum sativum0·27625465
AngiospermFabalesFabaceaeSophora flavescens−0·0486183
AngiospermFabalesFabaceaeSophora japonica−0·0286883
AngiospermFabalesFabaceaeTrifolium fragiferum0·62640519
AngiospermFabalesFabaceaeTrifolium hybridum−0·1524436
AngiospermFabalesFabaceaeTrifolium incarnatum0·21622365
AngiospermFabalesFabaceaeTrifolium pratense−0·0287130, 31, 32, 36, 85, 93
AngiospermFabalesFabaceaeTrifolium repens−0·0237336, 90
AngiospermFabalesFabaceaeTrifolium subterraneum0·87750085
AngiospermFabalesFabaceaeVicia americana0·2402346
AngiospermFabalesFabaceaeVicia villosa−0·0436423
AngiospermFabalesFabaceaeWisteria brachybotrys0·14218283
AngiospermFagalesBetulaceaeAlnus viridis0·36429715
AngiospermFagalesBetulaceaeBetula pendula0·6594284
AngiospermFagalesBetulaceaeCarpinus caroliniana0·54737326
AngiospermFagalesBetulaceaeOstrya virginiana0·40231726
AngiospermFagalesFagaceaeFagus sylvatica6·0897322, 3, 28
AngiospermFagalesFagaceaeQuercus alba0·67843426
AngiospermFagalesFagaceaeQuercus chapmanii0·62040166
AngiospermFagalesFagaceaeQuercus geminata1·06455466
AngiospermFagalesFagaceaeQuercus imbricaria0·43533526
AngiospermFagalesFagaceaeQuercus laevis0·06113067
AngiospermFagalesFagaceaeQuercus macrocarpa0·46334926
AngiospermFagalesFagaceaeQuercus muehlenbergii0·52836626
AngiospermFagalesFagaceaeQuercus myrtifolia0·64841966
AngiospermFagalesFagaceaeQuercus petraea1·96266828
AngiospermFagalesFagaceaeQuercus robur1·5426254, 28
AngiospermFagalesFagaceaeQuercus rubra0·32727726
AngiospermFagalesFagaceaeQuercus suber0·24223583
AngiospermFagalesFagaceaeQuercus velutina0·31826926
AngiospermFagalesJuglandaceaeCarya cordiformis0·37930326
AngiospermFagalesJuglandaceaeCarya laciniosa0·40732026
AngiospermFagalesJuglandaceaeCarya ovata0·47235426
AngiospermFagalesJuglandaceaeCarya tomentosa0·42533126
AngiospermFagalesJuglandaceaeJuglans cinerea0·48135726
AngiospermFagalesJuglandaceaeJuglans nigra0·38830626
AngiospermFagalesMyricaceaeMyrica cerifera0·14918775, 76
AngiospermGarryalesAucubaceaeAucuba japonica0·35229283, 86
AngiospermGentianalesApocynaceaeCynanchum acutum0·62940719
AngiospermGentianalesApocynaceaeNerium oleander0·41632519, 83
AngiospermGentianalesGentianaceaeGentiana decumbens0·52936769
AngiospermGentianalesRubiaceaeCoffea arabica0·38830771
AngiospermGentianalesRubiaceaeGalium elongatum0·92751419
AngiospermGentianalesRubiaceaeGalium mollugo0·08815436
AngiospermGentianalesRubiaceaeGardenia jasminoides0·12217686
AngiospermGentianalesRubiaceaeRubia tinctorum0·40231583
AngiospermGeranialesGeraniaceaePelargonium graveolens0·20222083
AngiospermLamialesBignoniaceaeCampsis grandiflora0·04211883
AngiospermLamialesBignoniaceaeCatalpa ovata0·26224583, 86
AngiospermLamialesLamiaceaeBallota undulata0·74546619
AngiospermLamialesLamiaceaeBetonica foliosa0·87950169
AngiospermLamialesLamiaceaeLavandula angustifolia0·44234083
AngiospermLamialesLamiaceaeLycopus europaeus0·66142919
AngiospermLamialesLamiaceaeMelissa officinalis1·08455719, 70
AngiospermLamialesLamiaceaeMentha longifolia0·72646119
AngiospermLamialesLamiaceaeMentha piperita1·22058370
AngiospermLamialesLamiaceaeOriganum vulgare0·47935669
AngiospermLamialesLamiaceaePlectranthus japonicus−0·0286983
AngiospermLamialesLamiaceaeSalvia officinalis0·56237783
AngiospermLamialesLamiaceaeThymus marschallianus1·94966769
AngiospermLamialesOleaceaeFraxinus americana0·10115926, 125
AngiospermLamialesOleaceaeFraxinus oxyphylla0·68443719
AngiospermLamialesOleaceaeLigustrum japonicum0·19221386
AngiospermLamialesOleaceaeLigustrum lucidum0·17219686
AngiospermLamialesOleaceaeOlea europaea0·03211083
AngiospermLamialesOleaceaeOsmanthus fragrans0·19221286
AngiospermLamialesPaulowniaceaePaulownia tomentosa0·43233286
AngiospermLamialesPlantaginaceaePlantago lagopus0·81848219
AngiospermLamialesPlantaginaceaePlantago lanceolata0·10015818
AngiospermLamialesPlantaginaceaePlantago maritima0·46735220
AngiospermLamialesScrophulariaceaeBacopa monnieri0·75246775
AngiospermLamialesScrophulariaceaeKickxia spuria0·79547919
AngiospermLamialesScrophulariaceaeMelampyrum pratense0·67843337, 41, 49
AngiospermLamialesVerbenaceaeVerbena officinalis0·57337919, 83
AngiospermLamialesVerbenaceaeVitex agnus-castus0·81948419
AngiospermLauralesLauraceaeLindera benzoin0·29426326
AngiospermLauralesLauraceaeLindera strychnifolia−0·0088483
AngiospermLauralesLauraceaePersea palustris1·79265575
AngiospermLauralesLauraceaeSassafras albidum0·29025926
AngiospermLilialesLiliaceaeLilium leichtlinii0·01210083
AngiospermLilialesLiliaceaeTricyrtis hirta0·14218383
AngiospermLilialesMelanthiaceaeHeloniopsis orientalis0·01210183
AngiospermMagnolialesMagnoliaceaeLiriodendron tulipifera0·68243686
AngiospermMagnolialesMagnoliaceaeMagnolia grandiflora0·59938776, 83
AngiospermMagnolialesMagnoliaceaeMagnolia hypoleuca0·62240286
AngiospermMagnolialesMagnoliaceaeMagnolia kobus0·41232486
AngiospermMalpighialesEuphorbiaceaeMallotus japonicus0·38230483
AngiospermMalpighialesEuphorbiaceaeMercurialis perennis0·11516737, 45
AngiospermMalpighialesEuphorbiaceaeSecurinega suffruticosa0·09215583
AngiospermMalpighialesFlacourtiaceaeIdesia polycarpa0·22222486
AngiospermMalpighialesLinaceaeLinum usitatissimum−0·3273793
AngiospermMalpighialesSalicaceaePopulus deltoides0·69644426
AngiospermMalpighialesSalicaceaePopulus euphratica0·71545619
AngiospermMalpighialesSalicaceaePopulus sieboldii1·78165424
AngiospermMalpighialesSalicaceaePopulus tremuloides0·1001576
AngiospermMalpighialesSalicaceaeSalix acmophylla0·65142119
AngiospermMalpighialesSalicaceaeSalix matsudana0·04211983
AngiospermMalpighialesViolaceaeHybanthus glutinosus0·17219983
AngiospermMalpighialesViolaceaeViola tricolor0·03211183
AngiospermMalvalesMalvaceaeGossypium hirsutum0·96252216
AngiospermMalvalesMalvaceaeHibiscus cannabinus0·4073198
AngiospermMalvalesMalvaceaeHibiscus moscheutos1·02953779
AngiospermMalvalesMalvaceaeHibiscus sabdariffa0·5973838
AngiospermMalvalesMalvaceaeHibiscus syriacus0·08215183
AngiospermMalvalesMalvaceaeKosteletzkya virginica0·93251774
AngiospermMalvalesMalvaceaeTilia americana0·48635926
AngiospermMalvalesThymelaeaceaeDaphne odora0·03711483, 86
AngiospermMyrtalesLythraceaeLythrum lineare0·63241074
AngiospermMyrtalesLythraceaeLythrum salicaria0·71345419
AngiospermMyrtalesMelastomataceaeMelastoma candidum0·08215283
AngiospermMyrtalesMelastomataceaeTibouchina pulchra−0·0098188
AngiospermMyrtalesMyrtaceaeCallistemon rigidus−0·0088583
AngiospermMyrtalesMyrtaceaeEugenia uniflora0·06112988
AngiospermMyrtalesOnagraceaeChamerion angustifolium0·32527617
AngiospermMyrtalesOnagraceaeEpilobium hirsutum0·65542619
AngiospermMyrtalesOnagraceaeLudwigia stolonifera0·61839819
AngiospermMyrtalesOnagraceaeOenothera lamarckiana−0·0187983
AngiospermPandanalesStemonaceaeStemona japonica0·13218083
AngiospermPiperalesSaururaceaeHouttuynia cordata1·05254983
AngiospermPiperalesSaururaceaeSaururus chinensis0·18220583
AngiospermPoalesCyperaceaeCarex aquatilis−0·7882825
AngiospermPoalesCyperaceaeCarex atherodes1·3205986
AngiospermPoalesCyperaceaeCarex biwensis1·12256683
AngiospermPoalesCyperaceaeCarex cinica2·44269083
AngiospermPoalesCyperaceaeCarex curvula0·78447515
AngiospermPoalesCyperaceaeCarex dispalata2·31268783
AngiospermPoalesCyperaceaeCarex filifolia1·2865927, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
AngiospermPoalesCyperaceaeCarex flacca0·89050418
AngiospermPoalesCyperaceaeCarex flavicans−0·2983825
AngiospermPoalesCyperaceaeCarex parciflora1·63264083
AngiospermPoalesCyperaceaeCarex sempervirens1·38360915
AngiospermPoalesCyperaceaeCarex subspathacea−0·0685625
AngiospermPoalesCyperaceaeCarex thunbergii1·57263283
AngiospermPoalesCyperaceaeCladium jamaicense1·41261274
AngiospermPoalesCyperaceaeCladium mariscus1·50361919
AngiospermPoalesCyperaceaeCyperus alopecuroides0·78847719
AngiospermPoalesCyperaceaeCyperus alternifolius3·42271983
AngiospermPoalesCyperaceaeCyperus latifolius1·02353619
AngiospermPoalesCyperaceaeCyperus michelianus1·04354519
AngiospermPoalesCyperaceaeCyperus microiria0·81248083
AngiospermPoalesCyperaceaeCyperus papyrus1·06855519, 71, 83
AngiospermPoalesCyperaceaeCyperus polystachyos1·14957679
AngiospermPoalesCyperaceaeCyperus surinamensis1·37960779
AngiospermPoalesCyperaceaeEleocharis cellulosa1·56263074
AngiospermPoalesCyperaceaeEleocharis parvula3·18271374
AngiospermPoalesCyperaceaeEleocharis uniglumis6·663733106
AngiospermPoalesCyperaceaeFimbristylis spadicea1·09556075, 77
AngiospermPoalesCyperaceaeRhynchospora plumosa2·30768682
AngiospermPoalesCyperaceaeScirpus americanus1·60963979
AngiospermPoalesCyperaceaeScirpus cyperinus2·05767482
AngiospermPoalesCyperaceaeScirpus olneyi0·99852977
AngiospermPoalesCyperaceaeScirpus robustus2·24868377
AngiospermPoalesCyperaceaeScirpus tabernaemontani0·11216583
AngiospermPoalesCyperaceaeScirpus validus1·14757573
AngiospermPoalesJuncaceaeJuncus effusus0·50236383
AngiospermPoalesJuncaceaeJuncus gerardii1·063552106
AngiospermPoalesJuncaceaeJuncus polycephalus0·36930079
AngiospermPoalesJuncaceaeJuncus roemerianus0·19021175, 77
AngiospermPoalesJuncaceaeLuzula luzuloides0·45134237, 44, 49
AngiospermPoalesPoaceaeAchnatherum hymenoides1·60063712, 13
AngiospermPoalesPoaceaeAegilops squarrosa2·01267283
AngiospermPoalesPoaceaeAgropyron cristatum0·9735267
AngiospermPoalesPoaceaeAgropyron dasystachyum0·9005056
AngiospermPoalesPoaceaeAgropyron repens1·11856436
AngiospermPoalesPoaceaeAgropyron smithii1·1875806, 7
AngiospermPoalesPoaceaeAgropyron subsecundum1·0905596
AngiospermPoalesPoaceaeAgropyron trichophorum1·1435737
AngiospermPoalesPoaceaeAgrostis alba2·13267814
AngiospermPoalesPoaceaeAgrostis gigantea3·35871736
AngiospermPoalesPoaceaeAgrostis palustris1·0555501
AngiospermPoalesPoaceaeAgrostis scabra0·26825136
AngiospermPoalesPoaceaeAgrostis stolonifera4·563729106
AngiospermPoalesPoaceaeAgrostis tenuis1·03454214, 37, 47
AngiospermPoalesPoaceaeAndropogon gerardii1·40961127, 80
AngiospermPoalesPoaceaeAndropogon scoparius3·85272280
AngiospermPoalesPoaceaeAnthoxanthum odoratum0·61339317, 18
AngiospermPoalesPoaceaeAristida stricta1·03854467
AngiospermPoalesPoaceaeArrhenatherum elatius0·88050218
AngiospermPoalesPoaceaeArundinaria gigantea8·76973579
AngiospermPoalesPoaceaeArundo donax1·4546148, 83
AngiospermPoalesPoaceaeAvena sativa1·5136225, 29, 30, 65, 83, 85, 93, 94, 95, 96
AngiospermPoalesPoaceaeBouteloua curtipendula1·71464797
AngiospermPoalesPoaceaeBouteloua gracilis1·1445747, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97
AngiospermPoalesPoaceaeBouteloua hirsuta2·19468097
AngiospermPoalesPoaceaeBrachypodium pinnatum0·96052118
AngiospermPoalesPoaceaeBrachypodium sylvaticum3·10571237, 45, 47, 51
AngiospermPoalesPoaceaeBriza media0·88050318
AngiospermPoalesPoaceaeBromus inermis1·3035956, 36, 91
AngiospermPoalesPoaceaeBromus pumpellianus0·9205136
AngiospermPoalesPoaceaeBromus tectorum1·47561512, 13, 91
AngiospermPoalesPoaceaeCalamagrostis canadensis1·76865236
AngiospermPoalesPoaceaeCalamagrostis epigejos2·24968437, 38, 45, 48
AngiospermPoalesPoaceaeCalamagrostis inexpansa1·8306586
AngiospermPoalesPoaceaeCalamagrostis rubescens1·5906346
AngiospermPoalesPoaceaeCalamagrostis villosa2·68970215, 37, 44, 45
AngiospermPoalesPoaceaeCenchrus longispinus1·38260881
AngiospermPoalesPoaceaeChasmanthium latifolium4·12772582
AngiospermPoalesPoaceaeChasmanthium sessiliflorum0·70744882
AngiospermPoalesPoaceaeCornucopiae cucullatum0·931516Aegilopssquarrosa
AngiospermPoalesPoaceaeCortaderia selloana0·57938282, 83
AngiospermPoalesPoaceaeCtenium aromaticum3·03971079
AngiospermPoalesPoaceaeCymbopogon citratus0·75246883
AngiospermPoalesPoaceaeCynodon dactylon1·5096211, 14, 72, 98, 99, 100, 101, 102
AngiospermPoalesPoaceaeDactylis glomerata0·60038918
AngiospermPoalesPoaceaeDanthonia intermedia1·4906176
AngiospermPoalesPoaceaeDanthonia parryi1·2705886
AngiospermPoalesPoaceaeDeschampsia cespitosa1·3776056, 37, 42, 44, 47, 54, 55
AngiospermPoalesPoaceaeDeschampsia flexuosa0·62840617, 37, 40, 43, 44, 46, 49, 50
AngiospermPoalesPoaceaeDigitaria decumbens0·45734885
AngiospermPoalesPoaceaeDigitaria ischaemum2·76270514
AngiospermPoalesPoaceaeDistichlis spicata1·59863573, 77
AngiospermPoalesPoaceaeEchinochloa colona0·85049519
AngiospermPoalesPoaceaeEchinochloa crus-galli1·37760675, 81
AngiospermPoalesPoaceaeEhrharta erecta0·7854761
AngiospermPoalesPoaceaeElymus cinereus1·0305396
AngiospermPoalesPoaceaeElymus elymoides1·32560012, 13
AngiospermPoalesPoaceaeElymus innovatus1·0505486
AngiospermPoalesPoaceaeElymus junceus1·1775786, 7
AngiospermPoalesPoaceaeElymus mollis0·85249683
AngiospermPoalesPoaceaeElymus virginicus2·36968879
AngiospermPoalesPoaceaeElytrigia atherica1·94766620
AngiospermPoalesPoaceaeEragrostis curvula0·8274858
AngiospermPoalesPoaceaeFestuca arundinacea1·30859614, 19, 87, 92, 98, 99, 100, 101, 102, 104, 105
AngiospermPoalesPoaceaeFestuca gigantea2·26468537, 42, 45
AngiospermPoalesPoaceaeFestuca halleri1·84566015
AngiospermPoalesPoaceaeFestuca idahoensis1·7306496
AngiospermPoalesPoaceaeFestuca ovina0·64341617, 18
AngiospermPoalesPoaceaeFestuca pratensis1·04354687, 92, 104, 105
AngiospermPoalesPoaceaeFestuca puccinellii1·68764515
AngiospermPoalesPoaceaeFestuca rubra1·1135631, 6, 14, 20, 25
AngiospermPoalesPoaceaeFestuca scabrella1·2885936, 54, 55
AngiospermPoalesPoaceaeFestuca scabriculmis1·48161615
AngiospermPoalesPoaceaeFestuca sylvatica2·9197082
AngiospermPoalesPoaceaeHelictotrichon pratense0·90850917, 18
AngiospermPoalesPoaceaeHilaria jamesii1·49461897
AngiospermPoalesPoaceaeHilaria rigida1·809656123, 124
AngiospermPoalesPoaceaeHolcus lanatus0·86049718
AngiospermPoalesPoaceaeHordeum vulgare1·8246579, 29, 30, 85, 93, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124
AngiospermPoalesPoaceaeImperata cylindrica1·13757182
AngiospermPoalesPoaceaeKoeleria cristata1·0635537
AngiospermPoalesPoaceaeLolium perenne3·64472114, 89
AngiospermPoalesPoaceaeLolium rigidum0·97052530, 31, 31, 65
AngiospermPoalesPoaceaeLycurus phleoides1·01453397
AngiospermPoalesPoaceaeManisuris rugosa3·62372078
AngiospermPoalesPoaceaeMelica uniflora1·84465937
AngiospermPoalesPoaceaeMelinis minutiflora0·45734785
AngiospermPoalesPoaceaeMiscanthus sinensis2·86270683
AngiospermPoalesPoaceaeMolinia caerulea1·16757738, 39, 48
AngiospermPoalesPoaceaeMuhlenbergia richardsonis2·50469397
AngiospermPoalesPoaceaeNardus stricta1·55162815
AngiospermPoalesPoaceaeOryza sativa4·16772683, 85, 107, 108, 109, 110
AngiospermPoalesPoaceaeOryzopsis asperifolia1·11856536
AngiospermPoalesPoaceaePanicum amarum0·83349078
AngiospermPoalesPoaceaePanicum commutatum4·22772782
AngiospermPoalesPoaceaePanicum maximum0·54737485
AngiospermPoalesPoaceaePanicum obtusum1·13457097
AngiospermPoalesPoaceaePanicum repens1·03053878, 82
AngiospermPoalesPoaceaePanicum texanum8·0277348
AngiospermPoalesPoaceaePanicum virgatum2·0126718, 27, 74, 80
AngiospermPoalesPoaceaePaspalum dilatatum1·6556431
AngiospermPoalesPoaceaePaspalum urvillei2·06267581
AngiospermPoalesPoaceaePaspalum vaginatum0·68843919
AngiospermPoalesPoaceaePaspalum wettsteinii0·59738685
AngiospermPoalesPoaceaePennisetum clandestinum0·9395181, 88
AngiospermPoalesPoaceaePhalaris arundinacea2·52169587
AngiospermPoalesPoaceaePhalaris tuberosa1·66764485
AngiospermPoalesPoaceaePhleum pratense0·8374946, 36, 93
AngiospermPoalesPoaceaePhragmites australis0·97852719
AngiospermPoalesPoaceaePhragmites communis2·73970379
AngiospermPoalesPoaceaePleioblastus chino5·07273083
AngiospermPoalesPoaceaePoa chaixii0·47435537, 51
AngiospermPoalesPoaceaePoa compressa0·64842036
AngiospermPoalesPoaceaePoa pratensis1·54362614, 98, 99, 100, 101, 102, 103
AngiospermPoalesPoaceaePoa secunda1·3436027
AngiospermPoalesPoaceaePuccinellia maritima0·59738420
AngiospermPoalesPoaceaePuccinellia phryganodes−0·9782525
AngiospermPoalesPoaceaeSaccharum officinarum1·50962079, 83, 107, 108
AngiospermPoalesPoaceaeSasa nipponica3·23471424, 83
AngiospermPoalesPoaceaeSecale cereale1·25658629, 65, 83, 91, 93
AngiospermPoalesPoaceaeSetaria geniculata1·65264281
AngiospermPoalesPoaceaeSetaria italica0·91651210, 11
AngiospermPoalesPoaceaeSetaria magna3·33771682
AngiospermPoalesPoaceaeSetaria sphacelata−0·1034685
AngiospermPoalesPoaceaeSorghastrum nutans1·99967027, 80
AngiospermPoalesPoaceaeSorghum bicolor1·53962410, 11, 21, 22
AngiospermPoalesPoaceaeSorghum halepense0·99953179
AngiospermPoalesPoaceaeSpartina alterniflora0·65342573, 77
AngiospermPoalesPoaceaeSpartina anglica1·56763120
AngiospermPoalesPoaceaeSpartina cynosuroides1·12956974, 82
AngiospermPoalesPoaceaeSpartina patens0·78047474, 77
AngiospermPoalesPoaceaeSporobolus cryptandrus0·71445597
AngiospermPoalesPoaceaeStipa comata0·6974457, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 80
AngiospermPoalesPoaceaeStipa richardsonii1·2805916
AngiospermPoalesPoaceaeStipa spartea1·3215996, 80
AngiospermPoalesPoaceaeStipa viridula1·6406416
AngiospermPoalesPoaceaeTrichachne californica1·5276238
AngiospermPoalesPoaceaeTripsacum dactyloides0·90350778
AngiospermPoalesPoaceaeTriticosecale spp.0·1311789
AngiospermPoalesPoaceaeTriticum aestivum2·4556929, 16, 29, 83, 85, 89, 91, 93, 94, 95, 96, 107, 108, 109, 110
AngiospermPoalesPoaceaeTriticum boeoticum2·51269483
AngiospermPoalesPoaceaeTriticum dicoccoides1·23258483
AngiospermPoalesPoaceaeTriticum percicumx1·60263883
AngiospermPoalesPoaceaeUniola paniculata0·83649178, 79
AngiospermPoalesPoaceaeZea mays0·82748621, 22, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
AngiospermPoalesPoaceaeZizania aquatica2·62569873, 78
AngiospermPoalesPoaceaeZizaniopsis miliacea3·91372378
AngiospermPoalesPoaceaeZoysia japonica0·31226714
AngiospermPoalesTyphaceaeTypha angustata0·65142219
AngiospermPoalesTyphaceaeTypha angustifolia0·22222675
AngiospermProtealesPlatanaceaePlatanus occidentalis0·45334426
AngiospermRanunculalesBerberidaceaeEpimedium grandiflorum0·29226283
AngiospermRanunculalesBerberidaceaeNandina domestica0·06713983, 86
AngiospermRanunculalesPapaveraceaePapaver bracteatum0·65242383
AngiospermRanunculalesPapaveraceaePapaver rhoeas0·48235883
AngiospermRanunculalesRanunculaceaeAconitum japonicum0·25224183
AngiospermRanunculalesRanunculaceaeAconitum loczyanum0·22222883
AngiospermRanunculalesRanunculaceaeAquilegia flabellata−0·0486283
AngiospermRanunculalesRanunculaceaeEranthis giganteus1·93966579
AngiospermRanunculalesRanunculaceaePulsatilla multifida0·67943569
AngiospermRanunculalesRanunculaceaeRanunculus japonicus0·26224683
AngiospermRosalesCannabaceaeCannabis sativa−0·2853993
AngiospermRosalesCeltidaceaeCeltis occidentalis2·65270026, 125
AngiospermRosalesElaeagnaceaeHippophae rhamnoides2·07967669
AngiospermRosalesElaeagnaceaeElaeagnus multiflora0·06213583
AngiospermRosalesMoraceaeFicus lyrata1·72864871
AngiospermRosalesMoraceaeMaclura pomifera0·81848326
AngiospermRosalesMoraceaeMorus alba0·55237583
AngiospermRosalesMoraceaeMorus rubra1·88466226, 79
AngiospermRosalesRosaceaeAronia melanocarpa1·17957969
AngiospermRosalesRosaceaeChaenomeles sinensis0·19221483
AngiospermRosalesRosaceaeCrataegus cuneata0·01210283
AngiospermRosalesRosaceaeFallugia paradoxa0·4573458
AngiospermRosalesRosaceaeKerria japonica0·23223383
AngiospermRosalesRosaceaePotentilla erecta0·90951169
AngiospermRosalesRosaceaePotentilla fruticosa0·1201726
AngiospermRosalesRosaceaePrunus serotina0·27625526
AngiospermRosalesRosaceaePrunus virginiana0·50036226
AngiospermRosalesRosaceaePyracantha crenulata−0·0088683
AngiospermRosalesRosaceaeRosa woodsii0·2902586
AngiospermRosalesRosaceaeRubus idaeus0·06714037, 42, 44, 45, 47
AngiospermRosalesRosaceaeSpiraea thunbergii0·06213683
AngiospermRosalesUlmaceaeUlmus americana2·03867326, 72
AngiospermRosalesUlmaceaeUlmus rubra1·25758726
AngiospermRosalesUrticaceaeUrtica dioica1·33560117, 37, 42, 45, 47
AngiospermRosalesUrticaceaeUrtica hulensis0·69044119
AngiospermSantalalesLoranthaceaeStruthanthus marginatus0·10416288
AngiospermSapindalesMeliaceaeGuarea macrophylla0·07114488
AngiospermSapindalesMeliaceaeMelia azedarach0·17220083
AngiospermSapindalesRutaceaePhellodendron amurense0·30226483
AngiospermSapindalesRutaceaePoncirus trifoliata0·39230983
AngiospermSapindalesRutaceaeZanthoxylum americanum0·46335026
AngiospermSapindalesRutaceaeZanthoxylum piperitum0·26224783
AngiospermSapindalesSapindaceaeAcer ginnala0·43233483
AngiospermSapindalesSapindaceaeAcer negundo0·41632626
AngiospermSapindalesSapindaceaeAcer rubrum0·90250675
AngiospermSapindalesSapindaceaeAcer saccharinum0·71545726
AngiospermSapindalesSapindaceaeAcer saccharum1·12456726, 83
AngiospermSapindalesSapindaceaeAesculus pavia0·18620876
AngiospermSapindalesSapindaceaeCupania oblongifolia0·10616388
AngiospermSaxifragalesCercidiphyllaceaeCercidiphyllum japonicum0·59738583, 86
AngiospermSaxifragalesCrassulaceaeKalanchöe braziliensis0·0099888
AngiospermSaxifragalesCrassulaceaeRhodiola linearifolia2·67970169
AngiospermSaxifragalesCrassulaceaeSedum hybridum3·32971569
AngiospermSaxifragalesHamamelidaceaeCorylopsis pauciflora0·14218186
AngiospermSolanalesConvolvulaceaeCalystegia japonica−0·0785183
AngiospermSolanalesConvolvulaceaeCalystegia sepium0·61739619
AngiospermSolanalesConvolvulaceaeCuscuta planiflora0·63341119
AngiospermSolanalesConvolvulaceaeCuscuta racemosa−0·0068888
AngiospermSolanalesConvolvulaceaeIpomoea sagittata0·53236974
AngiospermSolanalesSolanaceaeAtropa belladonna−0·0685583
AngiospermSolanalesSolanaceaeCapsicum annuum−0·00389103
AngiospermSolanalesSolanaceaeLycopersicon esculentum1·545627109, 110
AngiospermSolanalesSolanaceaePhysalis alkekengi0·0029683
AngiospermSolanalesSolanaceaeSolanum americanum0·14518688
AngiospermSolanalesSolanaceaeSolanum nigrum0·63741319
Angiospermunassigned to orderBoraginaceaeEchium angustifolium1·08655819
Angiospermunassigned to orderBoraginaceaeHeliotropium supinum0·76647019
Angiospermunassigned to orderBromeliaceaeAnanas comosus0·14218483
Angiospermunassigned to orderBromeliaceaeTillandsia usneoides0·25624276
Angiospermunassigned to orderCelastraceaeEuonymus japonicus0·15219086
Angiospermunassigned to orderNymphaeaceaeNuphar lutea0·68543819
Angiospermunassigned to orderSchisandraceaeSchisandra chinensis1·20958269
Angiospermunassigned to orderStaphyleaceaeStaphylea trifolia0·39731326
Angiospermunassigned to orderVitaceaeVitis aestivalis0·20622276
AngiospermZingiberalesCannaceaeCanna indica0·26224883
AngiospermZingiberalesMusaceaeMusa basjoo0·98252883
AngiospermZingiberalesZingiberaceaeRenealmia petasites0·40231688
AngiospermZingiberalesZingiberaceaeZingiber mioga0·12217783
Bryophyta (mosses)SphagnalesSphagnaceaeSphagnum cymbifolium1·27258983
EquisetophytaEquisetalesEquisetaceaeEquisetum arvense3·99272483, 84
EquisetophytaEquisetalesEquisetaceaeEquisetum hyemale2·91770783, 84
GymnospermCycadalesCycadaceaeCycas revoluta−0·0287083
GymnospermEphedralesEphedraceaeEphedra sinica−0·0785283
GymnospermGinkgoalesGinkgoaceaeGinkgo biloba−0·0486383
GymnospermPinalesAraucariaceaeAraucaria araucana0·40331835
GymnospermPinalesCupressaceaeChamaecyparis lawsoniana0·87149935
GymnospermPinalesCupressaceaeChamaecyparis obtusa0·26925235, 83
GymnospermPinalesCupressaceaeChamaecyparis pisifera0·37530235
GymnospermPinalesCupressaceaeChamaecyparis thyoides0·92951579
GymnospermPinalesCupressaceaeCupressocyparis leylandii0·81548135
GymnospermPinalesCupressaceaeCupressus sempervirens0·0029783
GymnospermPinalesCupressaceaeJuniperus communis0·02510735
GymnospermPinalesCupressaceaeJuniperus nana0·34027915
GymnospermPinalesCupressaceaeJuniperus virginiana0·09615676
GymnospermPinalesCupressaceaeThuja orientalis0·06814235, 83
GymnospermPinalesPinaceaeAbies alba0·34028015
GymnospermPinalesPinaceaeAbies balsamea0·19821768
GymnospermPinalesPinaceaeAbies fraseri0·17320168
GymnospermPinalesPinaceaeAbies grandis0·39931435
GymnospermPinalesPinaceaeAbies mariesii0·06213735
GymnospermPinalesPinaceaeAbies nordmanniana0·18820935
GymnospermPinalesPinaceaeAbies pectinata4·5127282, 3
GymnospermPinalesPinaceaeAbies procera0·44133635
GymnospermPinalesPinaceaeCedrus atlantica0·04812135
GymnospermPinalesPinaceaeLarix decidua0·86949815, 35, 68
GymnospermPinalesPinaceaeLarix laricina0·22422968
GymnospermPinalesPinaceaePicea abies1·36360415, 28, 35
GymnospermPinalesPinaceaePicea glauca0·53337033, 34, 68
GymnospermPinalesPinaceaePicea mariana0·19221568
GymnospermPinalesPinaceaePicea orientalis1·01653435
GymnospermPinalesPinaceaePicea rubens0·31626868
GymnospermPinalesPinaceaePinus armandii0·19821635
GymnospermPinalesPinaceaePinus banksiana0·19921868
GymnospermPinalesPinaceaePinus cembra0·36429815
GymnospermPinalesPinaceaePinus clausa0·64341766
GymnospermPinalesPinaceaePinus contorta0·05712835
GymnospermPinalesPinaceaePinus cooperi0·34728735
GymnospermPinalesPinaceaePinus flexilis0·06714135
GymnospermPinalesPinaceaePinus jeffreyi0·02010435
GymnospermPinalesPinaceaePinus koraiensis0·20222135
GymnospermPinalesPinaceaePinus luchuensis−0·0188083
GymnospermPinalesPinaceaePinus mugo0·35028915
GymnospermPinalesPinaceaePinus palustris0·31026667, 83
GymnospermPinalesPinaceaePinus parviflora0·11816935
GymnospermPinalesPinaceaePinus peuce0·04812235
GymnospermPinalesPinaceaePinus pinea0·0119935
GymnospermPinalesPinaceaePinus resinosa0·15219368
GymnospermPinalesPinaceaePinus strobiformis0·03411235
GymnospermPinalesPinaceaePinus strobus0·11917033, 34, 35, 68
GymnospermPinalesPinaceaePinus sylvestris0·2612443, 4, 28, 35, 68
GymnospermPinalesPinaceaePseudolarix amabilis0·03411335
GymnospermPinalesPinaceaePseudotsuga flauhauti0·18420735
GymnospermPinalesPinaceaePseudotsuga macrolepis0·90851035
GymnospermPinalesPinaceaePseudotsuga menziesii0·31927035, 68
GymnospermPinalesPinaceaeTsuga canadensis0·15919535, 68
GymnospermPinalesPinaceaeTsuga caroliniana0·17820268
GymnospermPinalesPinaceaeTsuga diversifolia0·38530535
GymnospermPinalesPinaceaeTsuga heterophylla0·11416635
GymnospermPinalesPodocarpaceaePodocarpus neriifolius0·36829971
GymnospermPinalesTaxodiaceaeCryptomeria japonica0·06613835, 83
GymnospermPinalesTaxodiaceaeCunninghamia lanceolata−0·0029035, 83
GymnospermPinalesTaxodiaceaeSequoia sempervirens0·14218583
GymnospermPinalesTaxodiaceaeSequoiadendron giganteum0·18821035
GymnospermPinalesTaxodiaceaeTaxodium distichum0·04312035
GymnospermPinalesTaxodiaceaeTaxodium japonicum1·55762924
GymnospermTaxalesTaxaceaeTaxus baccata0·08315335
GymnospermTaxalesTaxaceaeTaxus cuspidata0·24423735
GymnospermTaxalesTaxaceaeTorreya nucifera0·01210383
Lycopodiophyta (clubmosses)LycopodialesLycopodiaceaeLycopodium carolinianum1·03354178
Lycopodiophyta (clubmosses)LycopodialesLycopodiaceaeLycopodium clavatum0·54237283
Lycopodiophyta (clubmosses)SelaginellalesSelaginellaceaeSelaginella caulescens1·96766983, 84
Lycopodiophyta (clubmosses)SelaginellalesSelaginellaceaeSelaginella involvens2·11767783, 84
Lycopodiophyta (clubmosses)SelaginellalesSelaginellaceaeSelaginella uncinata1·74265183
Marchantiophyta (liverworts)MarchantialesMarchantiaceaeMarchantia polymorpha5·45273183
Polypodiophyta (true ferns)AsplenialesAspleniaceaeAsplenium cuneifolium0·05312652
Polypodiophyta (true ferns)AsplenialesAspleniaceaeAsplenium trichomanes−0·0088783
Polypodiophyta (true ferns)AsplenialesBlechnaceaeBlechnum amabile0·83248983
Polypodiophyta (true ferns)AsplenialesBlechnaceaeBlechnum spicant2·41868952, 53
Polypodiophyta (true ferns)AsplenialesBlechnaceaeWoodwardia orientalis0·18120384
Polypodiophyta (true ferns)AsplenialesDavalliaceaeDavallia mariesii−1·7092084
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeAcrophorus stipellatus−1·0392484
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeCyrtomium falcatum−2·039584
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeCyrtomium fortunei−1·9391184
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeDryopteris bissetiana−2·109284
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeDryopteris carthusiana0·18320652, 53
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeDryopteris crassirhizoma−2·029684
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeDryopteris erythrosora−1·959984
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeDryopteris filix-mas0·07014337, 38, 42, 44, 45, 47, 52, 53
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeDryopteris lacera−1·979784
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeDryopteris sieboldii−1·8991484
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeDryopteris uniformis−1·9291284
Polypodiophyta (true ferns)AsplenialesDryopteridaceaePolystichopsis amabilis−1·8391884
Polypodiophyta (true ferns)AsplenialesDryopteridaceaePolystichopsis pseudo-aristata−1·8791684
Polypodiophyta (true ferns)AsplenialesDryopteridaceaePolystichopsis standishii−1·9591084
Polypodiophyta (true ferns)AsplenialesDryopteridaceaePolystichum lepidocaulon−2·109384
Polypodiophyta (true ferns)AsplenialesDryopteridaceaePolystichum polyblepharum−2·099484
Polypodiophyta (true ferns)AsplenialesDryopteridaceaePolystichum pseudo-makinoi−1·7991984
Polypodiophyta (true ferns)AsplenialesDryopteridaceaePolystichum tripteron−1·979884
Polypodiophyta (true ferns)AsplenialesDryopteridaceaeCtenitis subglandulosa−1·6792184
Polypodiophyta (true ferns)AsplenialesOleandraceaeNephrolepis cordifolia−1·8991584
Polypodiophyta (true ferns)AsplenialesThelypteridaceaeCyclosorus acuminatus1·10156184
Polypodiophyta (true ferns)AsplenialesThelypteridaceaeCyclosorus dentatus2·94170984
Polypodiophyta (true ferns)AsplenialesThelypteridaceaeLastrea limbosperma0·96852452, 53
Polypodiophyta (true ferns)AsplenialesThelypteridaceaeLastrea oligophlebia−0·9492684
Polypodiophyta (true ferns)AsplenialesThelypteridaceaeLeptogramma mollissima0·83148884
Polypodiophyta (true ferns)AsplenialesThelypteridaceaePhegopteris connectilis2·64369952
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeAthyrium filix-femina1·35260337, 42, 44, 45, 47, 52, 53
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeAthyrium japonicum−0·9492784
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeAthyrium lobato-crenatum−0·2594184
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeAthyrium niponicum−1·1992284
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeAthyrium yokoscense−0·7392984
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeDiplazium hachijoense2·22168184
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeDiplazium wichurae−0·4993384
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeGymnocarpium dryopteris2·15367952
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeMatteuccia struthiopteris1·93366452, 53
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeStruthiopteris niponica3·07271183
Polypodiophyta (true ferns)AsplenialesWoodsiaceaeOnoclea sensibilis−0·6293084
Polypodiophyta (true ferns)GleichenialesGleicheniaceaeGleichenia glauca0·69244283
Polypodiophyta (true ferns)MarattialesMarattiaceaeAngiopteris lygodiifolia−0·5093284
Polypodiophyta (true ferns)OsmundalesOsmundaceaeOsmunda cinnamomea0·95352053
Polypodiophyta (true ferns)OsmundalesOsmundaceaeOsmunda gracilis1·13757253, 74
Polypodiophyta (true ferns)OsmundalesOsmundaceaeOsmunda japonica3·42171884
Polypodiophyta (true ferns)OsmundalesOsmundaceaeOsmunda lancea0·25124084
Polypodiophyta (true ferns)ParkerialesAdiantaceaeAdiantum pedatum0·23223283, 84
Polypodiophyta (true ferns)ParkerialesDennstaedtiaceaeDennstaedtia scabra−0·2694084
Polypodiophyta (true ferns)ParkerialesDennstaedtiaceaePteridium aquilinum1·29959437, 39, 41, 48, 52, 53, 84
Polypodiophyta (true ferns)ParkerialesPteridaceaePteris ensiformis−0·5393184
Polypodiophyta (true ferns)PolypodialesPolypodiaceaeColysis decurrens−1·8691784
Polypodiophyta (true ferns)PolypodialesPolypodiaceaeColysis wrightii−2·139184
Polypodiophyta (true ferns)PolypodialesPolypodiaceaeLoxogramme saziran0·02210683
Polypodiophyta (true ferns)PolypodialesPolypodiaceaePolypodium vulgare0·15319452, 53
Polypodiophyta (true ferns)PolypodialesPolypodiaceaePyrrosia lingua−1·0892383, 84
Polypodiophyta (true ferns)SchizaealesSchizaeaceaeLygodium japonicum1·10256283

Data are from 125 studies, contained in 54 papers in the primary literature, in which Si concentrations of leaf or non-woody shoot tissue were reported. Each study included at least two plant species growing in the same environment, and each study contained at least one species in common with another study. A residual maximum likelihood procedure was performed on the 1066 linked data to estimate the mean relative shoot Si concentration of species, adjusted for differences between studies.

Table 2.

Variance components model of shoot Si concentrations, based on a meta-analysis of primary data from 125 studies, contained in 54 papers in the primary literature, in which Si concentrations of leaf or non-woody shoot tissue were reported

Variance component
Variance
s.e.
% of total variance
Study0·8150·12816·0
Group3·4092·20466·9
Group/order0·0190·0320·4
Group/order/family0·1270·0442·5
Group/order/family/genus0·1020·0392·0
Group/order/family/genus/species0·0720·0441·4
Residual variance model0·5500·04010·8

Each study included at least two plant species growing in the same environment, and each study contained at least one species in common with another study.

Ann Bot. 2005 Nov; 96(6): 1027–1046.
Published online 2005 Sep 21. doi:  10.1093/aob/mci255

Fig. 1.

An external file that holds a picture, illustration, etc.
Object name is mci255f1.jpg

Ranked mean relative shoot Si concentration in 735 species of plants based on data from 125 independent studies in 54 papers in the primary literature. A residual maximum likelihood (REML) procedure was used to adjust for differences in shoot Si concentration between studies. Data are ranked and presented as a frequency distribution (inset). Species names and study references are given in Table 1 and the Appendix.

Ann Bot. 2005 Nov; 96(6): 1027–1046.
Published online 2005 Sep 21. doi:  10.1093/aob/mci255

Fig. 2.

An external file that holds a picture, illustration, etc.
Object name is mci255f2.jpg

The arithmetic mean shoot Si concentration as a function of mean relative shoot Si concentration, adjusted for differences in shoot Si concentration between studies using a residual maximum likelihood (REML) procedure. Data are based on 125 independent studies in 54 papers in the primary literature.

Ann Bot. 2005 Nov; 96(6): 1027–1046.
Published online 2005 Sep 21. doi:  10.1093/aob/mci255

Fig. 3.

An external file that holds a picture, illustration, etc.
Object name is mci255f3.jpg

Mean (± s.e.m.) relative shoot Si concentration of seven groups of plants (one-way ANOVA, F6,728 = 18·11, P < 0·001, residual mean square = 1·053). Silicon concentrations in leaf or non-woody shoot tissues of 735 plant species were obtained from 125 independent studies reported in 54 papers in the primary literature. Standard errors of differences of means (s.e.d.) between groups can be calculated as √{residual mean square * [(1/n1) + (1/n2)]}. Groups are ranked from lowest to highest mean relative shoot Si concentration: ferns (n = 59), gymnosperms (67), angiosperms (600), mosses (1), clubmosses (5), horse-tails (2), liverworts (1).

Ann Bot. 2005 Nov; 96(6): 1027–1046.
Published online 2005 Sep 21. doi:  10.1093/aob/mci255

Fig. 4.

An external file that holds a picture, illustration, etc.
Object name is mci255f4.jpg

Mean (±s.e.m.) relative shoot Si concentration in 44 angiosperm clades (representing orders or unassigned families; one-way ANOVA, F43,556 = 5·17, P < 0·001, residual mean square = 0·76). Data were obtained from 125 independent studies in 54 papers in the primary literature. Standard errors of differences of means (s.e.d.) between clades can be calculated as √{residual mean square * [(1/n1) + (1/n2)]}. Groups are ranked from lowest to highest mean relative shoot Si concentration: Acorales (n = 2), Brassicales (9), Liliales (3), Asparagales (24), Aquifoliales (3), Santalales (1), Pandanales (1), Celastraceae (1), Cornales (4), Bromeliaceae (2), Geraniales (1), Vitaceae (1), Fabales (31), Commelinales (1), Myrtales (10), Garryales (1), Malpighiales (13), Solanales (11), Ericales (26), Staphyleaceae (1), Sapindales (13), Gentianales (8), Zingiberales (4), Proteales (1), Ranunculales (10), Cucurbitales (4), Apiales (10), Lamiales (28), Malvales (8), Magnoliales (4), Laurales (4), Caryophyllales (42), Piperales (2), Dipsacales (2), Alismatales (9), Asterales (48), Nymphaeaceae (1), Rosales (25), Fagales (25), Boraginaceae (2), Arecales (9), Schisandraceae (1), Saxifragales (5), Poales (189). Mean shoot Si concentration of Acorales and Brassicales is –0·028 and 0·010, respectively.

Ann Bot. 2005 Nov; 96(6): 1027–1046.
Published online 2005 Sep 21. doi:  10.1093/aob/mci255

Fig. 5.

An external file that holds a picture, illustration, etc.
Object name is mci255f5.jpg

Percentage frequency distribution of mean relative shoot Si concentration of 600 species of angiosperms classified into commelinoid monocot (continuous line), non-commelinoid monocot (dashed line), or non-monocot (dotted line) groupings.