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Abstract

Previous research has found evidence of an association between indoor air pollution and asthma 

morbidity in children. Environmental intervention studies have been performed to examine the 

role of household environmental interventions in altering indoor air pollution concentrations and 

improving health. Previous environmental intervention studies have found only modest effects on 

health outcomes and it is unclear if the health benefits provided by environmental modification are 

comparable to those provided by medication. Traditionally, the statistical analysis of 

environmental intervention studies has involved performing two intention-to-treat analyses that 

separately estimate the effect of the environmental intervention on health and the effect of the 

environmental intervention on indoor air pollution concentrations. We propose a principal 

stratification (PS) approach to examine the extent to which an environmental intervention’s effect 

on health outcomes coincides with its effect on indoor air pollution. We apply this approach to 

data from a randomized air cleaner intervention trial conducted in a population of asthmatic 

children living in Baltimore, Maryland, USA. We find that amongst children for whom the air 

cleaner reduced indoor particulate matter concentrations, the intervention resulted in a meaningful 

improvement of asthma symptoms with an effect generally larger than previous studies have 

shown. A key benefit of using principal stratification in environmental intervention studies is that 

it allows investigators to estimate causal effects of the intervention for sub-groups defined by 

changes in the indoor air pollution concentration.
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1. Introduction

Previous studies have established an association between outdoor fine particulate matter 

(PM2.5) and the risk for mortality and morbidity [1-6]. In particular, research has shown an 

association between ambient outdoor PM2.5 and respiratory health [2, 6] and more 

specifically, found that higher concentrations of particulate matter air pollution (PM2.5 and 

PM10) were associated with a greater number of symptom days for asthmatic children [7, 8]. 

Interventions to lower outdoor PM2.5 are typically conducted at the national or state level 

through government regulatory agencies [9]. This process can be time-consuming and may 

take years to have an effect. Interventions at the individual or community level are more 

manageable and less expensive to implement. This suggests that environmental interventions 

to reduce indoor air pollution may be relatively simple and inexpensive ways to improve 

health. Recent research suggests that environmental interventions reduce indoor air pollution 

and allergens. It also suggests that they are associated with improved asthma in children 

[10-14]. However, the health benefits observed in these studies were generally modest and 

questions remain regarding whether environmental modification provides a significant 

benefit over standard medication-based treatments. The effectiveness of environmental 

interventions on health and asthma symptoms continues to be an area of active research 

[10-15].

The statistical analysis of environmental intervention studies has generally consisted of an 

intention-to-treat (ITT) analysis for the effect of the intervention on the health outcome and 

an ITT analysis for the effect of the intervention on the environmental factor(s) of interest 

[10, 11]. However, this approach does not allow one to simultaneously consider the 

relationship between the environmental intervention, environmental factor, and asthma 

morbidity. One can only detect an association between the intervention’s effect on health 

and the intervention’s effect on environmental factors. Studies performing regression 

analysis of indoor air pollution and respiratory health, such as in Hunt et al. [16], identify 

associations between indoor air pollution and respiratory health. Yet, in general, such 

analyses cannot estimate causal effects and their effect estimates may be biased due to 

potential confounding.

In many environmental intervention studies, the interventions are implemented to improve 

health by modifying an environmental factor that has been shown to be associated with 

health. As discussed in Frangakis and Rubin [17] and Stuart and Jo [18], conditioning on 

variables that may be affected by treatment assignment can result in biased treatment effect 

estimates. In Frangakis and Rubin [17], the authors introduced the principal stratification 

(PS) framework to estimate the effect of treatment when a key post-treatment variable is 

present. The PS approach estimates causal effects of the treatment by grouping individuals 

into principal strata based on the potential outcomes of the post-treatment variable. Because 
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we do not observe all the potential outcomes of the post-treatment variable, principal 

stratum membership is generally not known and must be inferred. Propensity score 

approaches can be used to estimate principal stratum membership and obtain causal 

treatment effect estimates [18, 19]. Other studies analyze data with post-treatment variables 

using a PS framework and Bayesian models [20-23]. A spatial Bayesian PS method to 

examine the causal effects of outdoor air quality regulations is proposed in Zigler et al. [9].

Another commonly used approach for analysis of data with post-treatment variables, 

proposed in Baron and Kenny [24], is to test for indirect effects of the post-treatment 

variable by fitting three regression models and then multiplying the estimates for the effect 

of the treatment on the post-treatment variable and the effect of the post-treatment variable 

on the outcome. Other causal analyses use marginal structural models (MSMs) to estimate 

the direct and indirect causal effects when post-treatment variables are present [25-28]. In 

Ten Have et al. [29], the authors propose a linear rank preserving model (RPM) approach 

that avoids making the assumption of sequential ignorability for the relationship between 

post-treatment variable and outcome as is assumed in MSMs. However, the RPM assumes 

no interaction between treatment and post-treatment variables.

In this paper, we extend the research examining the effectiveness of environmental 

interventions on health and asthma symptoms by using PS to analyze data from a 

randomized trial of air cleaners. The PS framework allows us to estimate the causal effect of 

an air cleaner on asthma symptoms for sub-populations of interest, such as for individuals 

for whom the air cleaner would reduce indoor PM2.5. If the air cleaner improves health by 

reducing indoor PM2.5, we would expect the health effect estimate for the sub-population of 

individuals for whom the air cleaners would meaningfully reduce indoor PM2.5 to be greater 

than the health effect estimate found in a traditional ITT. The PS approach allows us to take 

advantage of the randomized experimental design and avoid bias in the environmental 

intervention effect estimates that may be introduced by an analysis that simply conditions on 

the post-treatment variable. Using PS as opposed to testing for mediation as in Baron and 

Kenny [24] or performing mediation analysis estimating indirect effects as in VanderWeele 

[26], allows us to examine the relationships between the environmental intervention, indoor 

PM2.5, and health while avoiding making assumptions about a priori counterfactuals for 

interventions on indoor PM2.5 [26]. Our analysis includes a treatment by post-treatment 

variable interaction which is assumed not to exist in the RPM proposed in Ten Have et al. 

[29]. Unlike causal analyses using propensity scores and other causal analysis using PS that 

assume discrete post-treatment variables, such as in Elliott et al. [21] and Gallop et al. [22], 

we treat indoor PM2.5 as a continuous variable. By treating indoor PM2.5 as continuous as 

opposed to a discrete outcome, we are able to consider several different cutoffs to define a 

meaningful reduction in indoor PM2.5 and obtain causal treatment effect estimates for a 

multitude of potential PM2.5 outcome values. Our analysis parallels the work of Zigler et al. 

[9], Schwartz et al. [20] and Jin and Rubin [23] by considering a PS model with a 

continuous post-treatment variable and adapts it to the context of environmental intervention 

studies with a randomized treatment assignment. Section 2 describes the data used in our 

analysis, Section 3 discusses our PS model and estimation procedure, and Section 4 gives 

the results obtained from applying the PS analysis to data from a randomized trial in which 
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air cleaners are randomly assigned to inner-city households with asthmatic children and 

smokers. We end with a discussion and recommendations for using a PS approach in 

environmental intervention studies in Section 5.

2. PREACH Data

Our analysis uses data collected for the Particulate Reduction Education in City Homes 

(PREACH) study [11]. Previous studies have suggested that multi-modal intervention 

programs that combine environmental interventions and asthma education improve the 

health of asthmatic children [10, 30-32]. The main objective of the PREACH study was to 

compare the effect of air cleaners, air cleaners and a health coach, and no intervention on 

measures of second hand smoke exposure and asthma symptoms among children living with 

a smoker. It was a randomized trial with 3-arms: (1) control group receiving 4 asthma 

education sessions, (2) air cleaner group receiving 4 asthma education sessions and 2 air 

cleaners, and (3) air cleaner plus coach group receiving 2 air cleaners and 4 asthma 

education sessions which also include behavioral interventions with a health coach. 

Households randomized to the control case received four asthma education sessions during 4 

nurse home visits. They served as an attention control group and received the same number 

of nurse contacts as the treatment arms [11]. For households assigned to the air cleaner 

groups, an air cleaner was placed in the room in which the child slept for 4 or more nights 

per week and in the family or living room. In the air cleaner plus coach treatment arm, the 

health coach worked with the caregiver to reduce the child’s exposure to tobacco smoke and 

achieve a total home smoking ban.

Children between the ages of 6 and 12 who were physician-diagnosed asthmatics with 

persistent asthma were enrolled in the study using patient rosters from an urban pediatric 

emergency department and 2 community practices. The children in the study were limited to 

children who live with a smoker in the home who smoked at least 5 cigarettes per day and 

resided in the home at least 4 days a week. There were 126 households enrolled and 

randomized. Data was collected at baseline and a six month follow-up visit. Data collected 

at baseline and follow-up includes the number of symptom days for asthmatic child in 

previous two weeks of visit, the total cotinine concentration in child’s urine in ng/mL, the air 

nicotine concentration, the concentration of particulate matter air pollution less than 10 

micrometers in diameter (PM10), and the concentration of particulate matter air pollution 

less than 2.5 micrometers in diameter (PM2.5). PM10 and PM2.5 were measured using 4-

L/min impactors sampling for 7 days within 2 weeks of the clinic visit. The number of 

symptom days was determined by asking the caregiver how many days in the past two 

weeks did the child experience ”wheezing, coughing, shortness of breath, or tightness in the 

chest” and the number of symptom free days (SFDs) was calculated by subtracting the 

number of symptom days from 14 [11]. More details on the PREACH study can be found in 

Butz et al. [11]. One outcome of interest in the PREACH study is the change in PM2.5 

concentrations between baseline and follow-up visits. No significant differences in this 

outcome were detected between the two groups with air cleaners [11]. After combining the 

two air cleaner groups, a significant decrease in PM2.5 concentrations between baseline and 

follow-up for the combined air cleaner group was found with a mean decrease of 18 μg/m3 

[11]. The mean change in PM2.5 for the control group was estimated to be 2.4 μg/m3 and 
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found not to be significantly different than zero. In Butz et al. [11], they also found that the 

combined air cleaner group had a significant increase in number of SFDs (mean increase of 

1.36 SFDs) compared to control group with a mean increase of 0.24 SFDs which was not 

found to be significantly different than zero. The authors conclude that the significant 

improvement in health was most likely due to the reduction in indoor PM2.5 concentrations.

3. Methods

We consider a PS framework and a potential outcomes model [17, 33]. Let Ai be the random 

variable representing the level of treatment assigned to individual i and Zi be the s × 1 

column vector of observed baseline covariates. In our case, Ai = ai with ai ∈ {0, 1} where ai 

= 1 indicates that individual i is assigned to the treatment group and receives air cleaners. 

Let Yi be the response variable, which in our case is the change in SFD from baseline to 

follow-up, and let Yi (ai) be the potential outcome for the response variable given that 

individual i is assigned to treatment level ai. Let Xi be the random variable that is not 

directly controlled and whose levels depends on treatment assignment. For the PREACH 

analysis, this is the change in PM2.5 levels from baseline to follow-up. To simplify the 

notation throughout the rest of the paper, we will lose the subscript when denoting fine 

particulate matter and simply refer to PM2.5 as PM. Let Xi (ai) be the potential outcome for 

Xi given individual i is assigned to treatment level ai.

3.1. Assumptions

We assume the stable unit treatment value assumption (SUTVA) which is a common 

assumption in causal inference [29, 33]. SUTVA has two parts where the first assumes that 

there is no interaction between units of the study and thus, the potential outcomes of an 

individual are not influenced by the treatment assignment of other individuals. The second 

assumes that there are no other possible treatments or versions of the treatment in the study 

[33]. We also assume another common but untestable assumption in causal inference, the 

ignorability of treatment assumption [9, 29, 33]. This assumption implies that conditional on 

observed covariates, there is no unmeasured confoundedness in the relationship between the 

treatment and potential health outcomes and there is no unmeasured confoundedness in 

relationship between the treatment and potential outcomes for the environmental factor. This 

assumption is often reasonable for data obtained from randomized experiments. Since little 

is known about the mechanisms that contribute to indoor PM levels, we make a minimal 

amount of assumptions about indoor PM. We do not assume sequential ignorability since 

sequential ignorability implies that there does not exist extraneous variables that influence 

both indoor PM and the health outcome [22, 34]. We also do not assume another common 

assumption, the exclusion restriction [18, 22, 35]. In this case, the exclusion restriction 

would imply that there is no treatment effect on individuals whose PM levels are not 

affected by treatment level assignment. We also avoid making the monotonicity assumption, 

which would imply that there does not exist individuals for whom indoor PM would 

increase when assigned to air cleaner and decrease when assigned to the control case [22, 

35].
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3.2. Model

Note that we do not observe all the potential outcomes for a given individual. Thus, without 

further assumptions, we will not be able to identify a full joint density with which to draw 

inference. We, therefore, assume a model for the change in SFDs and the change in PM 

concentrations. For the model for the change in SFDs, the SFD model, we assume

(1)

where ηai ,i is normally distributed with mean 0 and variance ξ , ηai ,i ~ N (0, ξ2). Let Xi = 

(Xi (0) , Xi (1))′ and Yi = (Yi (0) , Yi (1))′. We assume that Yi given Zi and Xi is independent 

of Yj given Zj and Xj for i ≠ j. We further assume that given Xi (0), Xi (1) and Zi,

(2)

For the model for the change in PM, the PM model, we assume

(3)

where  and δ1 is the effect of the air cleaner on the PM potential 

outcome. We let Wi be a r × 1 column vector of observed baseline covariate for individual i, 

which do not necessarily have to be the same as the covariates in Zi. Note that ρ is the 

correlation between an individual’s PM potential outcome under treatment and that same 

individual’s PM potential outcome under control. Larger values of ρ will occur if there are 

unmeasured factors about an individual or in an individual’s environment that effect PM 

level concentrations. Since we do not observe an individual under both the treatment and 

control condition, the data provide no information on ρ. Thus, for our analysis, we will fix 

the value of ρ and check the sensitivity of our results to different values of ρ. Relaxations of 

the assumption that ρ is fixed are discussed in Section 5. We assume that Xi given Wi is 

independent of Xj given Wj for i ≠ j.

3.3. Bayesian Analysis

To estimate the parameters of interest and obtain causal effect estimates, we use a Bayesian 

approach as in Zigler et al. [9] and Jin and Rubin [23]. Let X be a n × 2 matrix with the ith 

row equal to the XI and Y be a n × 2 matrix with the ith row equal to the Y I . Note that Yi (1) 

and Xi (1) are unknown for the individuals in the control group and that Yi (0) and Xi (0) are 

unknown for the individuals in the treatment group. Let Y mis be a n × 1 column vector 

where the ith element, , is the missing SFD potential outcome for individual i and let 

Yobs be a n × 1 column vector where the ith element, , is the observed SFD potential 

outcome for individual i. Likewise, let Xmis be a n × 1 column vector where the ith element, 

, is the missing PM potential outcome for individual i and let Xobs be a n × 1 column 
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vector where the ith element, , is the observed PM potential outcome for Xi for 

individual i. The unknown potential outcomes, often referred to as counterfactuals, can be 

thought of as missing data that need to be estimated along with other parameters in the 

model [26, 33, 36]. Let θ = (γ′, δ1, σ0, σ1, α′, β1, β2, β3, ξ2)′ be a (r + s + 7) × 1 vector of the 

parameters from the SFD and PM models in (2) and (3), respectively. The posterior 

distribution for θ is proportional to

(4)

where Z is a n × s matrix with the ith row equal to  and W is a n × r matrix with the ith 

row equal to . Note that this is difficult to integrate since we need to integrate over 

missing potential outcomes. Thus, similar to the analysis in Zigler et al. [9], we focus on 

sampling from the joint posterior proportional to

(5)

Markov Chain Monte Carlo (MCMC) techniques are used to sample from this distribution. 

We iteratively sample the missing PM potential outcomes followed by the missing SFD 

potential outcomes. We then update the (r + 1) × 1 column vector θX = (γ′, δ1)′, followed by 

the (s + 3) × 1 column vector θY = (α′, β1, β2, β3)′. Lastly, we update the variance 

components ξ2, σ0, and σ1. Details of the sampling algorithm can be found in the 

Supplemental Material.

3.4. Priors

For the variance parameter in (2), ξ2, we select an inverse gamma prior (shape and scale 

parameters are 0.01 in our analysis). For the standard deviations in the PM model in (3), σ0 

and σ1, we assume lognormal priors. We let the priors for log (σ0) and log (σ1) be normal 

distributions with mean zero and variance , respectively 

(  in our analysis). As explained in Section 3.2, ρ is fixed as opposed to 

a free parameter. By fixing ρ, we are able to check the sensitivity of our causal effects 

estimates under different values of ρ. As an alternative, one could let ρ be a free parameter, 

using an inverse-Wishart prior for the covariance matrix in the PM model or by using a 

Dirichlet process mixture model [20]. If ρ is a free parameter, the causal effect estimate 

would be found by integrating over ρ as opposed to assuming ρ is equal to a fixed value. 

This adds a greater computational burden and since no household is observed under both 

treatment conditions, the data does not provide any additional information on ρ (See Section 

5).

For the other parameters, we choose less informative normal priors. We let θX be normally 

distributed with mean equal to the zero vector and a diagonal variance matrix with diagonal 

elements ( ) with σγ1 = … = σγr = σδ = 20 in our analysis. We let θY be 

normally distributed with mean equal to the zero vector and a diagonal variance matrix with 
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diagonal elements  with σα1 = … = σαs = σβ = 20 in our analysis. We 

assume a priori independence among all parameters.

3.5. Causal Effects

We consider the average causal effect of the treatment within principal strata where the 

principal strata are defined using the PM potential outcomes. The average causal effect can 

be found for any combination of principal strata [9, 17]. We consider a level ℓ such that if Xi 

(1) − Xi (0) < l, we conclude that the air cleaner would meaningfully reduce indoor PM. The 

average causal effect of the air cleaner on SFDs for those individuals for whom there would 

be a meaningful reduction in indoor PM under treatment is

(6)

Thus, this is the average causal effect for individuals for whom the treatment would have 

improved indoor PM levels. We refer to (6) as the expected reduced effect (ERE). If Xi (1) − 

Xi (0) ≥ ℓ, we conclude that the air cleaner would not meaningfully reduce indoor PM. The 

average causal effect of the air cleaner on SFDs for those individuals for whom indoor PM 

would not be meaningful reduced under treatment is

(7)

Thus, this is the average causal effect for individuals for whom the treatment would not have 

improved indoor PM levels. We refer to this as a expected not reduced effect (ENRE).

Another principal strata that may be of interest is the principal strata for which there would 

be no meaningful change in indoor PM under treatment. The average causal effect of the air 

cleaner on SFDs for those individuals for whom indoor PM would not meaningfully change 

under treatment is

(8)

We refer to this causal effect as the expected no change effect (ENCE). A large ENCE 

estimate would suggest that the air cleaner is improving health by another mechanism 

besides reducing indoor air pollution. The regulations for outdoor PM requires that it does 

not to exceed 35 μg/m3 in a 24 hour time period but indoor PM levels are not regulated in 

the United States [37, 38]. Thus, there is no clear choice for the value of ℓ so we consider 

several values for ℓ in our analysis.

4. Results

Our analysis of the PREACH data begins by focusing on the individuals for whom 

researchers were able to obtain the number of SFDs and PM concentrations for both the 

baseline and follow-up periods along with certain baseline covariates such as baseline 

asthma severity. Thus, our analysis focuses on 75 out of 126 trial participants (60%). Like 

Hackstadt et al. Page 8

Stat Med. Author manuscript; available in PMC 2015 December 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the analysis in Butz et al. [11], we combine the two air cleaner groups in the PREACH study 

into one group referred to as the air cleaner group giving 46 observations in the treatment 

group and 29 observations in the control group. Figure 1 summarizes the outcomes of 

interest by treatment group with the left plot of Figure 1 giving boxplots of the change in 

SFD from baseline to follow-up (in days) by treatment group. The right plot of Figure 1 

gives boxplots of the change in PM concentrations from baseline to follow-up (in μg/m3) by 

treatment group. Note that the air cleaner group generally has greater increases in SFDs 

compared with control group and most of the observations for the air cleaner group lie above 

zero. Also, the air cleaner group appears to have a greater decreases in PM concentrations 

when compared to control group and most of the observations in the air cleaner group lie 

below zero.

For our PS analysis, we ran the MCMC algorithm for 200,000 iterations discarding the first 

20,000 as burn-in. We let ℓ = −10 in (6), (7) and (8) but look at the sensitivity of the results 

to the choice of ℓ in Appendix A. We find that our results are generally robust to the choice 

of ℓ. The baseline covariates used for the PM model in (3) are initial PM2.5 and initial log10 

(cotinine). The baseline covariates used for the SFD model in (1) are initial PM2.5, initial 

log10 (cotinine), age, gender, and asthma severity based on national asthma guideline 

categories: Intermittent Asthma, Mild Persistent Asthma, Moderate Persistent Asthma, and 

Severe Persistent Asthma [39]. For the PM model, we selected to use only a subset of the 

covariates used in the SFD model since age, gender and baseline asthma severity are 

believed to affect the health outcome but are not believed to influence indoor PM levels.

4.1. Principal Stratification Analysis of the PREACH Data

We present the results for our PS analysis assuming ρ = 0.1 in (3), which implies that there 

is a non-zero correlation between an individual’s PM potential outcome for the treatment 

group and that same individual’s PM potential outcome for the control group but this 

correlation is positive and small. We then perform a sensitivity analysis with respect to ρ in 

Section 4.2. Figure 2 gives the posterior predictive estimates for the difference in the SFD 

potential outcomes, Yi (1) − Yi (0), versus the posterior predictive estimates for the 

difference in the PM potential outcomes, Xi (1) − Xi (0). For each individual i, the estimate 

for Yi (1) − Yi (0) is found by computing the difference in the potential outcomes for each 

MCMC iteration and then averaging across the MCMC iterations after discarding burn-in. 

The same procedure is used to estimate Xi (1) − Xi (0). The dashed vertical lines mark where 

Xi (1) − Xi (0) = −10 and Xi (1) − Xi (0) = 10.

Using 10 μg/m3 to denote a significant difference in the PM potential outcomes between 

treatment and control conditions, individuals whose Xi (1) − Xi (0) estimates fall to the left 

of the dashed lines have PM outcome estimates that would be meaningfully lower when 

assigned to the air cleaner group. Individuals whose Xi (1) − Xi (0) estimates fall between the 

dashed lines have PM outcome estimates that would not be meaningfully different when 

assigned to the air cleaner group compared to control and individuals whose Xi (1) − Xi (0) 

estimates fall to the right of the dashed lines have PM outcome estimates that would be 

meaningfully greater when assigned to the air cleaner group compared to control. Note that 

there are very few individuals for whom we estimate the latter to be the case which is as 
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expected since air cleaners are not likely to increase indoor PM. The estimate for Yi (1) − Yi 

(0) for individuals with Xi (1) − Xi (0) estimates to the left of the dashed lines are of 

particular interest since we are interested in the health effects for individuals for whom the 

air cleaner reduces indoor PM. Figure 2 shows that the majority of these individuals also 

have estimates for Yi (1) − Yi (0) > 0 suggesting improvement in the SFD outcome under 

treatment.

Our causal inference approach also allows us to estimate causal effects as discussed in 

Section 3.5. Letting ℓ = −10, ERE−10 is the average effect of the air cleaner on the SFD 

outcome for all individuals who also would have a meaningful reduction in indoor PM when 

assigned to the air cleaner. We estimate ERE−10 to be 1.95 days with a 95% credible 

interval of (0.14, 3.79) which suggests a rather large increase in SFDs for individuals who 

are also estimated to have a meaningful reduction in PM when assigned to the air cleaner. 

We estimate that 59% of the trial participants have a meaningful reduction in PM between 

treatment and control. This estimate is found by first finding the number of observations for 

which Xi (1) − Xi (0) < l for each MCMC iteration t, denoted by . We then take the mean 

of  across all iterations after discarding burn-in where n = 75 is the number of 

individuals in the trial.

The estimate for the corresponding ENRE when ℓ = −10 is the average causal effect estimate 

for individuals who would either have no meaningful difference in PM between treatment 

groups or a meaningful increase in PM under the treatment. We estimate ENRE−10 to be 

0.16 SFDs and the 95% credible interval for ENRE−10 to be (−2.00, 2.23). This suggests 

that individuals whose PM would not be meaningfully reduced under treatment do not have 

a significant improvement in asthma symptoms. Focusing on the subset of individuals who 

would have no meaningful change in PM between treatment groups, we estimate the 

ENCE−10 to be 0.52 SFDs and the 95% credible interval for ENCE−10 to be (−2.19, 3.19). 

The relatively large estimate for the ERE compared to the ENRE estimate suggests there is a 

much greater improvement in asthma symptoms for individuals whose households would 

have a meaningful reduction in PM compared to those that would not. These results support 

the hypothesis proposed in Butz et al. [11] that the air cleaner improves asthma symptoms 

by reducing indoor air pollution.

4.2. Results for different values of ρ

We perform the PS analysis using different values for ρ since, as discussed in Section 3.2, 

the data does not provide any information on what value of ρ to use in the analysis. We 

consider four additional values for ρ (−0.1, 0, 0.5, and 0.8). For ρ = 0.5 and 0.8, Figure 3 

summarizes the posterior predictive estimates for the difference in the SFD potential 

outcomes, Yi (1) − Yi (0), and the posterior predictive estimates for the difference in the PM 

potential outcomes, Xi (1) − Xi (0). The plots for ρ = 0 and ρ = −0.1 look similar to Figure 2 

and thus are not shown here. Note that the distribution of the estimates for Xi (1) − Xi (0) 

differs depending on the value of ρ. Compared to Figure 2, the number of individuals whose 

Xi (1) − Xi (0) estimates are greater than −10 is drastically less when ρ = 0.8 (right plot of 

Figure 3). Since almost all of the Xi (1) − Xi (0) estimates fall to the left of the dashed lines 
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when ρ = 0.8, it is hard to make comparisons of estimates for Yi (1) − Yi (0) between 

individuals who would have a meaningful reduction in PM and individuals who would not.

For all values of ρ considered in our analysis, including ρ = 0.1, Figure 4 gives the ERE−10 

estimates (circles) as defined in (6) along with the 95% credible intervals (lines). No matter 

which value we use for ρ, the estimate for ERE−10 is relatively large and between 1.4 and 

2.0 days. Note that as ρ increases, the ERE−10 estimate decreases. Figure 4 also summarizes 

the ENRE−10 estimates (triangles) for all the values of ρ used in our analysis. For all values 

of ρ except ρ = 0.8, the ENRE−10 estimate is much smaller than the corresponding ERE−10 

estimate. Assuming ρ = 0.8 implies that an individual’s PM potential outcome under 

treatment is extremely correlated with an individual’s PM potential outcome under control. 

This implies that the air cleaner has little effect on the PM potential outcome levels, which 

we believe is not a reasonable assumption for the PREACH study. The relatively large ERE 

estimates and relatively small ENRE estimates suggest that the air cleaner has the strongest 

effect on health for individuals where it would also meaningfully reduce PM concentrations. 

The causal effect estimates for individuals whose PM potential outcome would not 

meaningfully change under treatment (squares) are similar to, but slightly larger than, the 

ENRE estimates. This suggests that, regardless of the value selected for ρ, the air cleaner 

would not significantly improve health for individuals whom it also would not meaningfully 

change the PM potential outcomes.

4.3. Sensitivity Analysis

We also perform a sensitivity analysis to see how robust the results are to the removal of 

outliers. We first perform a PS analysis after removing the observations corresponding to 

eight individuals whose change in PM appear to be outliers when looking at the boxplot of 

the distributions of Xi by treatment group given in the right plot of Figure 1 and refer to this 

as the “remove PM outliers analysis.” Fixing ρ = 0.1, the ERE, ENRE, and ENCE estimates 

(points) along with their corresponding 95% credible intervals (lines) are given in Figure 5 

and denoted by the label ”PM.” The causal effect estimates from the analysis discussed in 

Section 4.1 are also given in Figure 5 and are denoted by the label ”original.” Note that the 

ERE estimate for the remove PM outliers analysis is smaller than the corresponding estimate 

from the original analysis. Though the credible interval does cross zero, the ERE estimate 

for the remove PM outliers analysis is still relatively large. Figure 5 also shows that the 

ENRE and ENCE estimates for the remove PM outliers analysis are smaller than their 

corresponding estimates in the original analysis. However, we still see the pattern of a 

relatively large ERE estimate and relatively small ENRE and ENCE estimates.

We also consider two other analyses that remove outliers. For ρ = 0.1, we perform the PS 

analysis after removing the observations corresponding to the six individuals whose change 

in SFDs appears to be outliers when looking at the boxplot of the distributions of Yi by 

treatment group given in the left plot of Figure 1 and refer to this as the “remove SFD 

outliers analysis.” The causal effect estimates are summarized in Figure 5 and are denoted 

by label “SFD.” Likewise, for ρ = 0.1, we perform the PS analysis after removing the 

observations corresponding to the 13 individuals with values that appear to be outliers when 

looking at either the change in PM or the change in SFD (only one individual had values 
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which were outliers when looking at both the change in PM and the change in SFD) and 

refer to this as the “remove SFD and PM outliers analysis.” The causal effect estimates and 

credible intervals are denoted by label ”SFD and PM” in Figure 5. Note that for both the 

remove SFD outliers and the remove SFD and PM outliers analysis, the ERE estimates are 

much smaller than their corresponding values in the original and remove PM outliers 

analyses but are still positive. Also, for the remove SFD outliers and the remove SFD and 

PM outliers analyses, the ERE estimates are only slightly larger than their corresponding 

ENRE and ENCE estimates. Thus, for these two cases, the results no longer strongly support 

that the air cleaner’s effect on the SFD outcome would be greatest for individuals whom it 

would also meaningfully reduce PM.

5. Discussion

We used a principal stratification approach to analyze data from a randomized 

environmental intervention study of children with asthma. We find that amongst children for 

whom the air cleaner would reduce indoor particulate matter concentrations, the intervention 

would result in a meaningful improvement of asthma symptoms. We estimate larger health 

effects for sub-populations of individuals who would have a meaningful decrease in their 

PM potential outcomes under treatment than for sub-populations that would not which 

supports the hypothesis that air cleaners improve health by reducing indoor air pollution 

concentrations. Compared to other environmental intervention study analyses, we estimate a 

larger effect on SFDs for the air cleaner when we focus on the sub-populations of 

individuals who would also have a meaningful decrease in indoor PM under treatment. In 

particular, we estimate the change in SFDs to be 1.95 SFDs more when assigned to the air 

cleaner compared to control for the sub-population of individuals that would have this 

meaningful decrease in PM. This estimate is found by defining a meaningful decrease in PM 

to be a PM potential outcome that would be at least 10 μg/m3 less when assigned to air 

cleaner compared to control and letting ρ = 0.1.

This estimate is larger than the health effects estimate found by the ITT analysis performed 

for the same study in Butz et al. [11] that estimates the change in SFD to be 1.12 SFDs more 

for the combined air cleaner group compared to the control group. This is also larger than 

the estimated improvement of 0.82 more SFDs per two weeks for asthmatic children in a 

treatment group receiving an environmental intervention compared to the control group for 

the study in Morgan et al. [10]. The health effect estimate of a mean difference of 1.95 SFDs 

between treatment and control over a two week period is similar to the treatment effect 

estimate found in a study using anti-inflammatory therapies [40]. In this study, they found a 

mean difference of 2 SFDs per month when comparing a treatment group of asthmatic 

children receiving an inhaled corticosteroid to a control group given a placebo therapy [40].

Our analysis focuses on a subset of the individuals in the randomized trial that had 

observations for PM and SFD at both baseline and follow-up and combines two treatment 

groups from the original study. Thus, there is concern that some covariates may no longer be 

balanced between the two treatment levels and there is unobserved confounding. There is no 

evidence to suggest the observations were missing in a systematic way or that combining air 

cleaner groups will lead to confounding. However, extensions to our analyses are to consider 
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propensity score matching to balance covariates and imputation methods for the missing 

data.

By fixing ρ in our analysis, we are able to see how the causal effect estimates differ 

depending on ρ. An alternate approach would be to allow ρ to be a free parameter. However, 

this makes the relationship between the causal effects and ρ less explicit. Additionally, the 

fact that for many iterations of the MCMC, we did not estimate any individual to have Xi (1) 

− Xi (0) < l for ℓ = −25 and −30 when ρ = 0.8 (See Appendix A) illustrates that the values of 

ℓ for which it is reasonable to estimate EREl differs depending on ρ.

As a possible alternative approach, we ran the PS analysis on the PREACH data with ρ a 

free parameter by assuming an inverse-Wishart prior for the covariance matrix in the PM 

model in (3). Using the PM model without ρ fixed, we were unable to get the MCMC 

algorithm to converge. Furthermore, the use of an inverse-Wishart distribution does not 

allow us to model the correlation and standard deviation components separately. Different 

results may be obtained if one models the correlation and standard deviation components 

separately as in Barnard et al. [41]. However, in general, our ability to estimate the 

correlation and standard deviation components is limited due to the relatively small sample 

size. As in Schwartz et al. [20], we also ran the PS analysis using a more flexible Dirichlet 

process mixture (DPM) model for the potential outcomes for indoor PM. For this approach, 

ρ is a free parameter. The DPM model also relaxes the normality assumption on the PM 

potential outcomes and provides a more flexible model for the potential outcomes. However, 

we were similarly unable to get the MCMC algorithm to converge, likely because of the 

relatively small sample sizes in each of the treatment groups. An extension to our analysis 

would be to consider non-normal data models for both the SFD and PM potential outcomes. 

Another extension to our analysis would be to consider two or more environmental factors 

in the potential outcomes framework. However, we again find the relatively small sample 

size makes it difficult to fit more complex models and leave these for future analyses.

We found that the ERE, ENRE and ENCE estimates are sensitive to the removal of outliers. 

They are particularly sensitive to the removal of observations that appear to be outliers when 

looking at the distribution of the change in SFDs. In the remove SFD outliers analysis, we 

removed observations from the control group that had relatively large decreases in SFD and 

removed observations from the treatment group that have relative large increases in SFD 

giving a smaller mean difference in the SFD outcome for treatment group and the control 

group (0.85 days) when compared to the original analysis (1.97 days). The mean difference 

in the SFD outcome when comparing the treatment group to the control group is also smaller 

for the remove SFD and PM outliers analysis (0.76 days) compared to the original analysis 

(1.97 days). This may be due to heterogeneity in individuals’ responses to PM reduction. In 

the remove SFD outliers analysis and the remove SFD and PM outliers analysis, we may be 

removing individuals that benefit the most from a reduction in PM. It is also important to 

note that removing outliers reduces the number of observations and increases the uncertainty 

the parameter estimates. It would be of interest to replicate this analysis for a randomized 

trial with more observations. In future work, it would also be of interest to perform a 

simulation study to explore the small sample performance of principal stratification in the 

context of environmental intervention studies.
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Our results are robust to the choice of ℓ used for the cutoff to define a meaningful reduction 

in PM (Appendix A). Regardless of the value for ℓ, we still have larger ERE estimates than 

their corresponding ENRE estimates. Our results are also rather robust to the choice of ρ, the 

correlation between an individual’s PM potential outcomes under treatment and control 

cases. For all values of ρ, except ρ = 0.8, the PS analysis without removing outliers estimates 

the ERE to be relatively large (at least 1.5 days) and much larger than the corresponding 

ENRE estimates (at most 0.79 days). The choice of ρ = 0.8 is rather extreme and suggests a 

very large correlation between an individual’s PM potential outcomes under both treatment 

and control conditions. Thus, it implies that there is not a large difference in the potential 

outcomes for PM between the two treatment levels which is an unreasonable assumption for 

the PREACH study, since the treatment is believed to affect the PM concentrations.

We elected to use a PS approach to examine the relationship between air cleaners, indoor 

PM, and asthma symptoms as opposed to using other causal inference tools such as MSM, 

which would allow for the estimation of indirect effects [25-27]. In particular, a MSM 

would allow us to estimate the indirect effect of indoor PM on asthma symptoms whereas a 

PS approach allows us to estimate average causal effects. These average causal effects are 

not the same as indirect effects unless additional assumptions are made about the 

relationships between air cleaners, indoor PM, and asthma symptoms [42, 43]. For this 

reason, there is some concern as to whether a PS analysis is the best approach when your 

interest is in the effect of the post-treatment variable on the response variable [42, 43]. 

However, using a causal approach that estimates indirect effects, such as MSMs, requires us 

to consider indoor PM as a treatment variable itself and assume that there is a process by 

which we can manipulate the concentrations of indoor PM such that we can achieve a given 

concentration of indoor PM. Given that the mechanisms that drive indoor PM concentrations 

are not well understood, we choose not to make this assumption for our analysis and use a 

PS approach. Furthermore, this assumption may be undesirable in other environmental 

studies given that the mechanisms that drive many environmental factors are often not well 

understood. We also note that our PS approach assumes no interaction between baseline PM 

and treatment. This assumption may be unreasonable for environmental intervention studies 

with extremely large baseline PM values for some individuals. For these individuals, the 

reduction in PM caused by the treatment may be negligible compared to the baseline PM 

resulting in little, if any, improvement in health. Thus, the treatment effect would depend on 

baseline PM. Also, the correlation between the PM potential outcomes under the control 

condition and under the treatment condition will be high for individuals with extremely large 

baseline PM. However, for the levels of baseline PM observed in the PREACH study, we 

believe the no interaction assumption is reasonable.

In this paper, we demonstrate the effectiveness of using a potential outcomes approach and 

PS in the analysis environmental intervention studies. However, when applying causal 

inference techniques to environmental intervention studies, it is important to consider all the 

assumptions made in the analysis. The PS approach requires an unverifiable ignorability 

assumption and assumes that, conditional on the covariates in the potential outcomes model, 

no other covariates confound the treatment and environmental factor relationship or the 

treatment and health outcome relationship. This assumption may be reasonable for 
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randomized trials, especially for double-blind randomized trials as in Lanphear et al. [13], 

but becomes more of a concern in observational studies and in randomized trials when there 

is missing data, different levels of adherence among treatment groups, or poor compliance. 

To make this assumption more reasonable, it is helpful to have measures of the factors that 

one believes may confound these relationships in the data and condition on them in the 

analysis. It is also particularly important to consider whether it is valid to assume that the 

treatment assignment of one individual, such as receiving an air cleaner or not, will not 

effect the potential outcomes of other individuals in the study. Environmental interventions 

at the individual level are not likely to violate this assumption but interventions at the 

national level, such as setting national air pollution standards, are likely to violate this 

assumption. We also recommend considering whether it is best to use a discrete variable to 

model the environmental factor or to use a continuous variable as in Zigler et al. [9] and our 

analysis. If one assumes a discrete variable for an environmental factor, a simpler model, 

similar to the model used in Gallop et al. [22], might be appropriate but it does require 

defining a threshold for the level of the environmental factor that indicates it is meaningfully 

affected by treatment. If it is unclear what to choose for the threshold, a continuous variable 

may be preferred. However, regardless of whether the post-treatment environmental factor is 

treated as discrete or continuous, the causal effect estimates in the PS framework can be 

used to determine the extent to which the effects of the treatment on the environmental 

intervention coincides with the effects of the treatment on the environmental factor.
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Appendix A

As discussed in Section 3.5, it is not apparent how to specify the value for ℓ when estimating 

the ERE, ENRE and ENCE. Thus, we find estimates for ERE, ENRE and ENCE specifying 

several different values for ℓ and 5 different values for ρ. We summarized these estimates 

for the ERE, ENRE and ENCE in Figures 6, 7 and 8, respectively. For ρ = 0.8, we were 

unable to estimate ERE for ℓ = −30, −25, and −20 because, for many iterations of the 

algorithm, no individual was estimated to have Xi (1) − Xi (0) < l. Figure 6 illustrates that as 

ℓ approaches 0, the ERE estimates decrease. This may be due to the fact that as the cutoff ℓ 

approaches 0, the individuals included in the principal strata may only have a small 

differences in their PM potential outcomes between treatment and control conditions. Thus, 

we may be including individuals for whom there would not be a meaningful reduction in PM 

under treatment in the principal strata, which may cause us to underestimate the causal effect 
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for sub-population of individuals that would have a meaningful reduction in PM under 

treatment. Yet, for most of the values for ℓ and ρ, the ERE estimates are relatively large and 

all the ERE estimates are greater than one. It is important to note that as ℓ changes, the 

percent of trial participants who are estimated to fall into the sub-population of individuals 

that would experience a meaningful reduction in PM changes. With fewer trial participants 

in the principal strata, there is more uncertainty in the ERE estimates, resulting in wider 

credible intervals. There are far fewer trial participants estimated to be the sub-population of 

individuals who would experience a meaningful reduction in PM when ℓ = −30 (39% of trial 

participants) then when ℓ = 0 (71% of trial participants). Thus, one needs to be careful when 

making inference on the sub-groups in the principal stratification analysis [44]. Additionally, 

one needs to exercise care when comparing effects estimated in different sub-groups, as 

these groups may differ from each other on unmeasured covariates.

Figure 7 summarizes the ENRE estimates for 7 different values of ℓ and all the values of ρ 

used in our analysis. For ρ = 0.8, we were unable to estimate the ENRE for ℓ = 0, and −5 

because, for many iterations of the algorithm, no individual was estimated to have Xi (1) − 

Xi (0) ≥ ℓ. Figure 7 shows that as ℓ decreases and moves farther away from 0, the ENRE 

estimate increases. In this case, as ℓ decreases, we are more likely to include people in the 

principal strata that actually would have a meaningful reduction in PM. Thus, our estimate 

for ENRE may be inadvertently inflated. For all values of ρ except ρ = 0.8, the ENRE 

estimates are relatively small, which suggests that there would be little, if any, improvement 

in asthma symptoms for individuals who would not experience a meaningful reduction in 

indoor PM under treatment. For all values of ℓ and ρ except when ρ = 0.8, the ENRE 

estimates are much smaller than the corresponding ERE estimates. The relatively larger ERE 

estimates compared to the relatively smaller ENRE estimates suggest the air cleaner would 

have the strongest effect on health for individuals where it would also meaningfully reduce 

PM concentrations.

Figure 8 summarizes the ENCE estimates for 5 different values of ℓ (ℓ = 10, 15, 20, 25, and 

30) and all the values of ρ used in our analysis. For ℓ = 5, we were unable to estimate the 

ENCE because, for many iterations of the algorithm, no individual was estimated to have |Xi 

(1) − Xi (0)| < |ℓ|. Except when ρ = 0.8, these average causal effect estimates of the air 

cleaner on SFDs for the subpopulation of individuals whose PM would not meaningfully 

change under treatment are relatively small and similar in magnitude to the ENRE estimates.
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Figure 1. 
Left plot gives boxplots of the change in symptom free days (SFD) for asthmatic children 

from baseline to 6 month follow-up by treatment group. Right plot gives boxplots of the 

change in indoor PM2.5 concentrations (in μg/m3) from baseline to 6 month follow-up by 

treatment group.
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Figure 2. 
Plot of the estimated difference in the SFD potential outcomes between treatment and 

control case, Yi (1) − Yi (0), versus the estimated difference in the PM potential outcomes 

between treatment and control case, Xi (1) − Xi (0), for each individual i in trial. The solid 

vertical line denotes where Xi (0) = Xi (1). The left dashed line marks where Xi (1) − Xi (0) = 

−10 and the right dashed line marks where Xi (1) − Xi (0) = 10. The solid horizontal line 

marks where Yi (1) − Yi(0) = 0.
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Figure 3. 
Plots of the estimated difference in the SFD potential outcomes between the treatment and 

control cases, Yi (1) − Yi (0), versus the estimated difference in the PM potential outcomes 

between the treatment and control cases, Xi (1) − Xi (0), for each individual i in trial when ρ 

= 0.5 (left plot) and ρ = 0.8 (right plot). In each plot, the solid vertical line denotes where Xi 

(0) = Xi (1). The left dashed line marks where Xi (1) − Xi (0) = −10 and the right dashed line 

marks where Xi (1) − Xi (0) = 10. The solid horizontal line marks where Yi (1) − Yi (0) = 0.
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Figure 4. 
Plots of the causal effect estimates for different values of ρ in the PM potential outcomes 

model in (3). The points give estimates for the expected reduced effect (ERE), the expected 

not reduced effect (ENRE), and the expected no change effect (ENCE) discussed in Section 

3.5. The vertical lines are the corresponding 95% credible intervals.
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Figure 5. 
Plot of the estimated causal effects (points) along with 95% credible intervals (lines) for the 

sensitivity analysis performed in Section 4.3 with ρ = 0.1 and ℓ = −10. The expected 

reduced effect (ERE), expected not reduced effect (ENRE), and expected no change effect 

(ENCE) estimates were calculated from PS analyses performed on data without removing 

any outliers (original), after removing observations that were outliers in the change in PM 

distribution (PM), after removing observations that were outliers in the change in SFD 

distribution (SFD), and after removing observations that were outliers in the change in PM 

distribution or the change in SFD distribution (SFD and PM).
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Figure 6. 
Plot of the estimated expected reduced effect (ERE) along with 95% credible intervals for 5 

different values of ρ (−0.1, 0, 0.1, 0.5, and 0.8) and 7 different values for the cutoff for the 

difference in the PM potential outcomes (ℓ). For ρ = 0.8, we were unable to estimate the 

ERE for ℓ = −30, −25, and −20 because, for many iterations of the algorithm, no individual 

was estimated to have Xi (1) − Xi (0) < l for these values of ℓ.
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Figure 7. 
Plot of the estimated expected not reduced effect (ENRE) along with 95% credible intervals 

for 5 different values of ρ (−0.1, 0, 0.1, 0.5, and 0.8) and 7 different values for the cutoff for 

the difference in the PM potential outcomes (ℓ). For ρ = 0.8, we were unable to estimate 

ENRE for ℓ = −5 and 0 because, for many iterations of the algorithm, no individual was 

estimated to have Xi (1) − Xi (0) ≥ l for these values of ℓ.
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Figure 8. 
Plot of the estimated expected no change causal effect (ENCE) along with 95% credible 

intervals for 5 different values of ρ (−0.1, 0, 0.1, 0.5, and 0.8) and 5 different values for the 

cutoff for the absolute value of the difference in the PM potential outcomes (ℓ).
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