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Abstract

In environmental epidemiology, we are often faced with two challenges. First, an exposure 

prediction model is needed to estimate the exposure to an agent of interest, ideally at the 

individual level. Second, when estimating the health-effect associated with the exposure, 

confounding adjustment is needed in the health-effects regression model. The current literature 

addresses these two challenges separately. That is, methods that account for measurement error in 

the predicted exposure often fail to acknowledge the possibility of confounding, while methods 

designed to control confounding often fail to acknowledge that the exposure has been predicted. In 

this paper, we consider exposure prediction and confounding adjustment in a health-effects 

regression model simultaneously. By using theoretical arguments and simulation studies, we show 

that the bias of a health-effect estimate is influenced by the exposure prediction model, the type of 

confounding adjustment used in the health-effects regression model, and the relationship between 

these two. Moreover, we argue that even with a health-effects regression model that properly 

adjusts for confounding, the use of a predicted exposure can bias the health-effect estimate unless 

all confounders included in the health-effects regression model are also included in the exposure 

prediction model. While these results of this paper were motivated by studies of environmental 

contaminants, they apply more broadly to any context where an exposure needs to be predicted.

Introduction

In the past two decades, there has been a wealth of epidemiological research on the health-

effects of air pollution.1–3 Studies have reported important associations between short-term 

and long-term exposure to ambient levels of air pollution and a wide range of adverse health 

outcomes.

Air pollution measurements are usually obtained from fixed monitoring locations, while data 

on health outcomes are generally available at the individual level with geocoded addresses 
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or as aggregated counts within a prespecified geographical region. The common approach to 

integrate these two types of data is to develop a statistical model for predicting levels of air 

pollution at places where the health outcomes are available.

Various methods can be employed to predict missing air pollution values, including nearest-

neighbor and kriging approaches.4,5 Recently, land-use regression has garnered much 

attention because of its ability to improve local variation in exposure prediction by 

incorporating land-use (geographic) covariates into the prediction model. Hoek et al6 

provides a review of land-use regression models, and others7–14 have applied this 

methodology in epidemiological studies.

Another common issue in studies of air pollution and health is confounding,15 which arises 

due to the complex dependencies that exist between air pollution, the health outcome of 

interest, and other covariates. Researchers employ expert knowledge in an attempt to control 

confounding through the use of covariates associated with both the exposure and the 

outcome. Great care is taken to minimize the magnitude of bias in the health-effect estimate, 

although it is unlikely that the bias can be completely removed. We use the term confounder 

here to define a covariate that is associated with the exposure, associated with the outcome 

independently of the exposure, and not on the causal pathway between the two.

Sheppard et al15 provides a discussion of both confounding and exposure measurement error 

in air pollution epidemiology, and points out that exposure assessment should be evaluated 

in the context of health-effect estimation. With effect estimation in mind, it is known that: 

(1) better exposure prediction (i.e. smaller prediction error) does not necessarily lead to 

smaller mean squared error16 of the health-effect estimate; and (2) confounding can lead to 

biased effect estimation.17 However, the current literature treats confounding and exposure 

prediction as separate statistical issues. That is, methods that account for measurement error 

in the predicted exposure often fail to acknowledge the possibility of confounding, while 

methods designed to control confounding often fail to acknowledge that the exposure has 

been predicted.

We simultaneously consider exposure prediction and confounding adjustment in a health-

effects regression model. Based on theoretical arguments, we show that using different sets 

of covariates in an exposure prediction model and in a health-effects regression model can 

bias the health-effect estimate. We provide a simulation study that illustrates this concept in 

the context of a cohort study on the association between long-term exposure to PM2.5 and 

cardiovascular disease. We show that better prediction (higher R2) does not always imply 

better effect estimation (smaller bias). Our results suggest that exposure prediction and 

confounding adjustment need to be considered simultaneously. In fact, we show that even 

under a correctly specified health-effects regression model that includes all confounders, the 

use of a predicted exposure can bias the health-effect estimate unless all of the confounders 

included in the health-effects regression model are also included in the exposure prediction 

model.

The concepts described in this paper, although motivated by epidemiological studies of air 

pollution and health, are broadly applicable to any context in which an exposure is predicted 
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with covariates that might also be confounders of the exposure-response relationship. In the 

discussion, we provide examples of the broader applicability of our results.

Confounding bias due to exposure prediction

Let Ci be a set of covariates for the ith observation, and assume that the outcome Yi and the 

exposure Xi are generated under the following linear models:

(1)

(2)

where  and  are independent, normally distributed, mean-zero error terms with variances 

 and . The true exposure Xi is assumed to be unobserved for all observations; 

therefore, an exposure prediction model is necessary.

Suppose interest lies in the estimation of the linear exposure-outcome relationship β, 

conditional on the covariates Ci. Here, and throughout, no restriction is placed on γ or α, and 

individual components of the vectors are free to be 0.

The difficulty in estimating β in this setting is twofold: (1) in a practical application, we do 

not know the exact set of covariates C necessary for confounding adjustment; and (2) the 

exposure is not directly observed and must be predicted. Current literature fails to 

acknowledge these two important concepts simultaneously, and as such, researchers may be 

misguided when faced with these issues. Our results provide a starting point at 

understanding the complex relationship between exposure prediction and confounding 

adjustment and provide some basic guidance as to what can be expected in practice. We 

briefly present a few results here; for a fuller discussion and mathematical derivation, see the 

eAppendix.

First, imagine an admittedly unrealistic situation in which no confounding adjustment is 

needed (γj = 0 or αj = 0 for all j ≥ 1). In such a situation, the bias of a health-effect estimate 

falls fully within the vast measurement error literature18–21 and will therefore not be 

discussed here. Similarly, consider the case where the exposure is fully observed, but 

confounding adjustment is necessary (γj ≠ 0 and αj ≠ 0 for some j ≥ 1). In this situation, one 

can rely exclusively on the large literature on confounding adjustment for standard 

regression modelling22–24 and will therefore not be discussed here.

We address simultaneous consideration of these concepts — that is, when exposure 

prediction and confounding adjustment are both necessary, and when a potentially large set 

of covariates are available for confounding adjustment and exposure prediction. Using 

overlapping sets of covariates to predict exposure and adjust for confounding can lead to 

biased health-effect estimates. Intuitively, this can be expected; under this situation, the 

predicted exposure may be more correlated with the confounders than with the true 

exposure.
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When the goal of a study is health-effect estimation, the decision to include a potential 

confounder in either the exposure prediction model or the health-effects regression model 

needs to be based on more than just the predictive power of the potential confounder on the 

exposure or the strength of the relationship with the outcome. Rather, the decision needs to 

be based on some tradeoff between the two. To emphasize this concept, we will now discuss 

special cases where exposure prediction is either beneficial or detrimental to the goal of 

health-effect estimation under the common situation where confounding adjustment is 

necessary.

Confounding bias inflation due to exposure prediction under outcome 

model misspecification

Consider an oversimplified scenario in which all confounders are used to predict the 

exposure and no confounding adjustment is made in the health-effects regression model. 

Note that under the true models specified in Equations 1 and 2, this corresponds to a correct 

specification of the exposure prediction model but an incorrect specification of the health-

effects regression model. While this would rarely occur in practice, it serves to illustrate that 

exposure prediction can increase the magnitude of confounding bias.

More specifically, assume that the true data-generating mechanism is given by Equations 1 

and 2. We refer to confounding bias as the bias in the health-effect estimate from a health-

effects regression model that fails to control for any confounding (Yi = γ0 + Xiβ + εi). Let Wi 

= α0 + Ciα be the predicted exposure with α0 and α known from Equation 2. Consider 

fitting the health-effects regression model that uses the predicted exposure Wi in place of the 

true exposure Xi and fails to control for any confounding (Yi = γ0 + Wiβ + εi). It can be 

shown that the bias of a health-effect estimate using the predicted exposure is always larger 

in magnitude than the confounding bias when using the true exposure. In this specific 

context, using a predicted exposure in a health-effects regression model will always lead to a 

more biased health-effect estimate than using the true exposure, and the degree to which the 

predicted exposure increases the bias is determined solely by the prediction accuracy of the 

exposure prediction model. Therefore, the bias in the health-effect estimate can be large 

even when the confounding bias is small if the correctly specified exposure prediction model 

has poor prediction power. The full analytical expression, with discussion, can be found in 

the eAppendix.

Such a result occurs because the correlation between the predicted exposure and the 

confounders that are missing from the health-effects regression model may be magnitudes 

larger than the correlation between the predicted exposure and the true exposure. Similar 

confounding bias inflation occurs under any health-effects regression model that fails to 

adequately adjust for confounding when using the true exposure prediction model.

As we will show in the subsequent sections, this relationship does not generalize to more 

complex settings. In fact, the bias of the health-effect estimate can either increase or 

decrease in magnitude if a subset of the confounders are used in the exposure prediction 

model (i.e. exposure prediction model misspecification). The bias depends on both the set of 
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covariates used for exposure prediction and the set of covariates used for confounding 

adjustment in the health-effects regression model.

Confounding bias due to exposure prediction under exposure prediction 

model misspecification

In this section, we assume that confounding can be completely adjusted for in the health-

effects regression model. We show that to return an unbiased health-effect estimate, either 

(1) the exposure prediction model must be correctly specified, (2) all confounders included 

in the health-effects regression model must be included in the exposure prediction model, or 

(3) the covariates used in the exposure prediction model must be uncorrelated with the 

confounders.

Assume that the data is generated under the following linear models:

(3)

(4)

where C(1), C(2), and C(3) denote subsets of C. Notice that in this data-generating scheme, 

there is only partial overlap in the sets of covariates in the two models, and that the 

necessary set of confounders is C(1).

Assume that C(1) is fully observed so that we can use a health-effects regression model that 

correctly adjusts for confounding by including C(1) as a linear predictor. Under this correctly 

specified health-effects regression model, using a predicted exposure will bias the effect 

estimate unless (1) the exposure prediction model is correctly specified, (2) the covariates 

used in the exposure prediction are uncorrelated with the confounders C(1), or (3) all of the 

confounders C(1) are included in the exposure prediction model.

More specifically, assume that no data is collected on the set C(3) and that α3 ≠ 0, so that we 

are guaranteed misspecification of our exposure prediction model. Consider the health-

effects regression model that correctly adjusts for confounding but uses a predicted exposure 

based only on C(2) in place of the true exposure (Yi = Wiβ + γ0 + C(1)γ1 + εi). This exposure 

prediction model purposely excludes confounders C(1). Under such a procedure, the health-

effect estimate will be biased unless the covariates C(2) used to predict the exposure are 

uncorrelated with the confounders C(1) (result in eAppendix). A related result when 

estimating the health-effect in the presence of unmeasured confounding will be discussed 

below.

In most applications, the set of covariates used to predict the exposure will not be 

uncorrelated with the confounders, and excluding the confounders from the exposure 

prediction model will bias the health-effect estimate. However, an unbiased health-effect 

estimate can be obtained if the exposure prediction model is based on both C(1) and C(2) 

(result in eAppendix). In other words, by including the confounders in the exposure 
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prediction model, the health-effects regression model that properly adjusts for confounding 

will remain unbiased. This result may seems counter to intuition at first glance, but is easily 

explained. By including the confounders C(1) in the exposure prediction model, we 

guarantee that the variation in the predicted exposure that is used to estimate the health-

effect is uncorrelated with the confounders. For a mathematical discussion, see the 

eAppendix.

In general, any misspecification in the health-effects regression model or the exposure 

prediction model will lead to a biased health-effect estimate. The magnitude of these biases 

will be difficult to compare under various levels of misspecification. More work needs to be 

done to determine the best strategy for minimizing the bias under model misspecification. 

However, these preliminary results suggest that under a health-effects regression model that 

properly adjusts for confounding, one must include confounders in the exposure prediction 

model to avoid bias.

Exposure prediction that removes confounding bias

In a simplified situation from the previous section, where the data is generated under 

Equations 3 and 4, assume that no data is collected on the set C(1), so that direct control of 

confounding is impossible. Further, assume that α3 = 0 and that C(2) is uncorrelated with the 

missing confounders C(1). If the predicted exposure is based solely on these covariates C(2) 

that are both predictive of the exposure and uncorrelated with the unmeasured confounding, 

then the resulting health-effect estimate will be unbiased (result in eAppendix). This result 

can be viewed as an instrumental variable approach where C(2) is used as an instrument for 

X25,26.

Such a result is applicable in the context of air pollution studies of health. Suppose that we 

believe there is spatial confounding in our study and are unable to control it because we do 

not have data at the desired level of spatial resolution. An unbiased health-effect estimate 

can be obtained by building an exposure prediction model that uses only those covariates 

that vary on a different spatial scale than the spatial confounding (or those covariates with 

little to no spatial structure). This is true because these covariates will be uncorrelated with 

the spatial confounding, and our previous result will hold.

Simulation setup and results in air pollution epidemiology

We have provided theoretical evidence that an exposure prediction model chosen solely on 

its ability to predict the true exposure may lead to a biased health-effect estimate. We now 

provide a simulated example that mimics a real cohort study of air pollution and health to 

show that better prediction (higher R2) does not imply better effect estimation (smaller bias).

Consider a hypothetical cohort study of the association between long-term exposure to 

PM2.5 and cardiovascular disease in the New England region. Assume we have 

cardiovascular hospitalization rates over the study period for each of the 2165 zip codes in 

New England, and we wish to have available PM2.5 levels for each of the 2165 zip codes. Of 

the 2165 zip codes, 57 have air pollution monitors within their boundaries, and the exposure 

for these zip codes can be measured directly as the mean monitor value during the study 
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period. For the remaining 2108 zip codes, we assume the exposure values are missing and 

need to be predicted.

Figure 1 provides a map of the 2165 zip codes in New England, with the 57 PM2.5 

monitoring locations marked with an x. We observe that the PM2.5 monitors are sparse in 

New England, and tend to cluster near major population centers. As such, the spatial 

heterogeneity in PM2.5 across New England will be difficult to capture based solely on 

spatial location (i.e. latitude and longitude).

The intention of this simulation is to illustrate how the choice of covariates used in the 

PM2.5 prediction model will affect the estimated health-effect under a misspecified health-

effects regression model that does not fully account for confounding. We generate 1000 

realizations of our hypothetical cohort in the following manner:

1. Use the observed distribution of 9 land-use covariates for each zip code in New 

England. Table 1 provides a complete list and summary statistics for each land-use 

covariate considered.

2. Augment the 9 land-use covariates with one N (0,1) random variable, and denote 

the centered and standardized versions of these 10 covariates as Ci.

3. Generate the exposure based on the relationship between the observed PM2.5 levels 

and C. That is, fit the exposure model Xi = α0 + Ciα + εx for the 57 zip codes that 

have observed PM2.5 measurements, and use the resulting α̂
0 = 10.86, α̂ = (−0.51, 

−0.44, −0.38, 0.35, 0.22, −0.16, 0.16, 0.13, −0.05, 0), and  to generate a 

simulated “true” exposure as: X̃
i = α̂

0 + Ciα̂ +  (0, α̂2)

4. Generate the cardiovascular hospitalization rates using the regression model: ln(Yi) 

= X̃
iβ+Ciγ+ (0, 0.4672), where γ = (0, 0.01, 0.11, −0.15, −0.13, 0.12, −0.14, 

−0.13, 0.06, 0.01) and β = 0.04. Other choices of γ were considered and are 

available in the eAppendix.

5. Remove the “true” PM2.5 values X̃ from the dataset to reflect the zip code that are 

missing exposure. The final dataset contains 57 zip codes of (Yi, X̃
i, Ci) and 2108 

zip codes of (Yi, Ci)

Table 2 summarizes the covariates that are included in each model of the data-generating 

mechanism. Note that the true exposure is generated using C1 through C9, while the true 

confounders are C2 through C9.

For ease of demonstration, this data generating mechanism purposely uses a nearly worst-

case scenario; there is a large overlap in the set of covariates used to predict the exposure 

and those used to adjust for confounding. In reality, there will be partial overlap between 

these two sets. See the eAppendix for further discussion.

We will proceed using land-use regression to estimate PM2.5 levels that are missing from the 

study. Once the land-use regression is used to estimate the missing PM2.5 values, a health-

effects regression is performed using a completed dataset that replaces the missing 2108 

PM2.5 values with their corresponding predicted values.
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The only remaining decision for the purpose of our simulation is which land-use covariates 

to include in the land-use regression model to predict the missing PM2.5 values. Considering 

every combination of the land-use covariates would amount to 210 = 1024 possible models. 

Instead, we chose to consider 10 nested regression models that include the 10 land-use 

covariates in order of their true predictive power of PM2.5. The following summarizes the 

steps used to predict PM2.5 and estimate the resulting health-effect:

1. Fit the land-use regression model including only C1 as a predictor for the 57 zip 

codes with observed PM2.5

2. Estimate the 2108 missing PM2.5 values, W, based on the model from Step 1

3. Estimate the effect of long-term PM2.5 exposure on cardiovascular hospitalization 

rates using a regression model including only W as a predictor (ln(Yi) = γ0+Wiβ + 

εi). The health-effects regression model is always misspecified.

4. Repeat Steps 1–3, but using {C1, C2}, {C1, C2, C3}, …, {C1, …, C10} as predictors 

in the exposure regression model from Step 1. Each land-use regression model is 

misspecified, except for the one that includes {C1, …, C9}

Note that in Step 3, we fit a regression model that fails to control confounding and gives a 

biased health-effect estimate. The magnitude of this bias, which is given in closed form in 

the eAppendix, is determined by a tradeoff between the bias due to lack of adjustment for 

confounding and the prediction accuracy of the PM2.5 regression model. It does not depend 

on the true value of β. As such, we consider only one value of β = 0.04. However, if we had 

chosen to control confounding for some fixed set of covariates, results would be similar.

Figure 2 provides the R2 from the land-use regression models and the corresponding bias of 

the health-effect estimate from the hypothetical study of the association between long-term 

exposure to PM2.5 and cardiovascular hospitalization rates. The land-use regression model 

that provides the health-effect estimate with the smallest bias is the one that includes the first 

five land-use covariates (% forest, % open space, % urban, traffic density, and elevation) 

and has corresponding R2 value of less than 0.6. This occurs because the bias due to the lack 

of adjustment for confounding happens to be negated by the bias due to the measurement 

error in the exposure prediction. By including the two additional covariates distance to 

major road and point emissions, the R2 can be increased to 0.7, but this results in a large 

bias. In this case, the measurement error induced by the exposure prediction no longer 

negates the confounding bias, and we are left with a biased health-effect estimate. Of the 10 

models considered, 5 have a smaller bias than the model that uses the true exposure (the 

dotted line in Figure 2), suggesting that a predicted exposure can either improve or worsen 

effect estimation when compared to the true exposure in the presence of uncontrolled 

confounding.

This simple simulation illustrates that in the presence of uncontrolled confounding, a more 

accurate prediction of the exposure does not necessarily lead to a better health-effect 

estimate. Exposure prediction can exacerbate the problem of uncontrolled confounding, but 

all is not lost. Recall that in this hypothetical study, we purposefully fail to control for any 

confounding, but with a properly chosen PM2.5 prediction model, we were able to return 
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nearly unbiased effect estimates. In that situation, the exposure prediction was beneficial for 

health-effect estimation, but we are able to determine this only because we know the true 

exposure and health-effect regression models.

In addition to fitting the data as described above, we illustrate that even under a health-

effects regression model that properly adjusts for confounding, a predicted exposure can 

lead to a biased health-effect estimate. Note that C2 through C9 are the confounders. Thus, 

we proceed as follows:

1. Fit an incorrectly specified land-use regression model that includes only C1 and C10 

(and excludes C2 through C9) as predictors for the 57 zip codes with observed 

PM2.5. We purposely included in the model only the covariates that are not 

confounders.

2. Estimate the 2108 missing PM2.5 values, W, based on the model from Step 1.

3. Estimate the effect of long-term PM2.5 exposure on cardiovascular hospitalization 

rates using a regression model including W and all of the necessary confounders C2 

through C9 as predictors (ln(Yi) = βWi + γ0 + γ2C2i + … + γ9C9i + εi). Note that 

using the true exposure in this model would yield an unbiased health-effect 

estimate.

Using the above data-fitting algorithm, the bias of the health-effect estimate is 0.01, 

corresponding to a 25% bias. This occurs because, although confounding bias is zero, the 

exposure model has been misspecified. To avoid this bias, the exposure prediction model 

that includes all confounders in addition to the other covariates can be used in Step 1. Doing 

so makes the bias approximately 0 (the simulated value is 0.0002). This verifies a few of our 

theoretical results previously discussed. First, even under a health-effects regression model 

that properly adjusts for confounding, a predicted exposure can bias the health-effects 

estimate. Second, including all confounders in the exposure prediction model makes the 

estimated health-effect unbiased.

Discussion

We simultaneously consider two of the most important and challenging issues in 

environmental epidemiology: exposure prediction and confounding adjustment. Although 

the motivation and terminology come from air pollution epidemiology, results apply to any 

context in which exposure measurements are incomplete and must be predicted. Examples 

include exposures to herbicides or pesticides, burn pits in Iraq and Afghanistan, low-level 

radio waves, dietary intake, and blood lead levels27–32. In each, the exposure of interest is 

not completely observed and must be predicted, while confounding adjustment is necessary 

when fitting the health-effects regression model.

Current statistical methods dealing with missing exposure and confounding adjustment treat 

the two topics as distinct. For example, methods to overcome missing exposure rely on 

exposure prediction, and exposure prediction can be viewed as a measurement error 

problem.18–21 Methods for exposure prediction are concerned only with bias of the health-

effect estimates due to measurement error associated with the prediction of the true 
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exposure; these methods do not consider how predicting exposure with covariates that are 

correlated with the outcome might bias the health-effect estimates. Similarly, methods 

designed for confounding adjustment do not acknowledge that the exposure has been 

predicted. For example, the approach of Wang et al33 was designed for the selection of 

confounders in the context of linear models for both the outcome and the exposure when the 

exposure has been fully observed.

New statistical methods are needed to simultaneously predict exposure while adjusting for 

confounding. While the results of our paper indicate that under a properly specified health-

effects regression model, all confounders should be used to predict the exposure, the optimal 

strategy is less clear when there is uncertainty surrounding the covariates that should be 

included in both the exposure prediction model and the health-effects regression model. The 

decision to include a covariate in the outcome or the exposure model needs to be based on 

both the predictive power of the covariate on the exposure and the strength of the 

relationship with the outcome. An extension of Wang et al33 into the context of missing 

exposure could provide a foundation of methodologies used to simultaneously predict 

exposure and control confounding.

We framed our results with the priority of returning an unbiased health-effect estimate, and 

we ignored the possibility of a bias-variance tradeoff. We do not include any results on the 

variance in order not to distract from the main points. However, we do not believe that there 

is a simple bias-variance tradeoff when simultaneously considering exposure prediction and 

confounding adjustment.

Our results do not address how spatial smoothing will affect the bias of a health-effect in the 

presence of unmeasured spatial confounding. However, it is reasonable to postulate similar 

results on the bias of a health-effect estimate when employing spatial smoothing. Such 

results would be related to the work of Dominici et al34; these researchers provide results to 

reduce confounding bias in the pollution-mortality relationship due to unmeasured time-

varying factors such as season and inuenza epidemics in the context of time-series studies. 

One could adapt their results for cross-sectional studies of air pollution and health by 

indexing by space instead of time.

Issues of bias have been presented in the context of cross-sectional studies. There is a likely 

statistical parallel for time-series studies. If missing exposure values are imputed using 

covariates that are temporally correlated with both the exposure and the outcome, then 

similar biases are likely. For example, meteorological covariates could be temporally 

correlated with both air pollution and health.

We assumed simple linear relationships between the outcome, the exposure, and the 

confounders. Deriving analytic results for biases under more complex models is impractical; 

however, similar biases are expected. Greater care is needed when using predicted exposure 

values in epidemiological studies of health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Map of the 2165 zip codes in New England with the 57 PM2.5 monitoring locations marked 

with an x
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Figure 2. 
The R2 of the land-use regression models and the corresponding bias of the health-effect 

estimate from the hypothetical study of the association between long-term exposure to 

PM2.5 and cardiovascular hospitalization rates in the New England region. The solid line is 

the bias, the dashed line the R2, and the dotted line corresponds to the bias due to the lack of 

adjustment for confounding.
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Table 2

Summary of Covariates Included in Each Model of the Simulation Study

Covariate C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Exposure model X X X X X X X X X

Outcome model X X X X X X X X X

Confounders X X X X X X X X
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