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Abstract

Emerging evidence indicates that near-roadway pollution (NRP) in ambient air has adverse health

effects. However, specific components of the NRP mixture responsible for these effects have not

been established. A major limitation for health studies is the lack of exposure models that estimate

NRP components observed in epidemiological studies over fine spatial scale of tens to hundreds of

meters. In this study, exposure models were developed for fine-scale variation in biologically

relevant elemental carbon (EC). Measurements of particulate matter (PM) and EC less than 2.5 μm

in aerodynamic diameter (EC2.5) and of PM and EC of nanoscale size less than 0.2 μm were made

at up to 29 locations in each of eight Southern California Children's Health Study communities.

Regression-based prediction models were developed using a guided forward selection process to

identify traffic variables and other pollutant sources, community physical characteristics and land

use as predictors of PM and EC variation in each community. A combined eight-community

model including only CALINE4 near-roadway dispersion-estimated vehicular emissions

accounting for distance, distance-weighted traffic volume, and meteorology, explained 51% of the

EC0.2 variability. Community-specific models identified additional predictors in some

communities; however, in most communities the correlation between predicted concentrations

from the eight-community model and observed concentrations stratified by community were

similar to those for the community-specific models. EC2.5 could be predicted as well as EC0.2.
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EC2.5 estimated from CALINE4 and population density explained 53% of the within-community

variation. Exposure prediction was further improved after accounting for between-community

heterogeneity of CALINE4 effects associated with average distance to Pacific Ocean shoreline (to

61% for EC0.2) and for regional NOx pollution (to 57% for EC2.5). PM fine spatial scale variation

was poorly predicted in both size fractions. In conclusion, models of exposure that include traffic

measures such as CALINE4 can provide useful estimates for EC0.2 and EC2.5 on a spatial scale

appropriate for health studies of NRP in selected Southern California communities.

1. Introduction

Emerging evidence suggests that near-roadway air pollution is associated with chronic

respiratory, cardiovascular, and neurological diseases (Guxens and Sunyer, 2012; HEI,

2010). Considerable uncertainty exists as to the components of the near-roadway pollutant

mixture responsible for chronic health effects. Oxides of nitrogen have been commonly

measured to develop near-roadway prediction models because of the close association

between NOx and vehicular emissions and the existence of inexpensive passive NOx

monitors (HEI, 2010). Although acute effects of NO2 have been observed at ambient

concentrations, toxicological studies have identified components of ambient particulate

matter as more likely to be responsible for the chronic effects of near-roadway exposures.

Recent epidemiological studies have reported health associations with estimated exposure to

particulate elemental carbon (EC), employing models based on traffic metrics and other land

use (Brauer et al., 2007; Morgenstern et al., 2007; Ryan et al., 2007). Particles with EC may

also contain transition metals and organic compounds that cause oxidative stress and

inflammation known to be involved in the pathogenesis of asthma and other respiratory

diseases (Ghio et al., 2012; Riedl and Diaz-Sanchez, 2005). EC, especially smaller particles,

carries these toxicologically relevant particle components deep into the lung. However, there

have been few exposure models estimating components of particulate matter on a fine

spatial scale of tens to a few hundred meters that is relevant for epidemiological studies

examining near roadway effects.

In Southern California, EC is a useful marker for vehicular combustion products, especially

from diesel powered vehicles, which are the primary EC source (Schauer, 2003). Smaller

contributions to ambient EC are made by wood smoke (little used in our study

communities), ship emissions, railways, and off-road vehicles (EPA, 2012). For this study,

we measured and modeled Southern California EC concentrations in the fine respirable

fraction less than 2.5 μm in aerodynamic diameter (EC2.5) and in a nanoscale size fraction

less than 0.2 μm (EC0.2) that we anticipated might better reflect the near-roadway gradient in

ultrafine particles in communities participating in the Children's Health Study (CHS), a large

prospective study of cardio-respiratory health (McConnell et al., 2010). The study is notable

for the fine spatial scale at which these measurements were made in order to assess small-

scale intra-community variation. Information on traffic, land use and other community

features were used to develop models of within-community exposure, based on

measurements made at informatively selected locations in each study community. We also

measured and modeled intra-community variation in particulate matter (PM) mass in the 2.5
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and 0.2 μm size fractions (PM2.5 and PM0.2). Additionally, we assessed both within- and

between-community variation of these pollutants.

2. Methods

2.1 Study locations and air sampling

Air pollution samplers for size-resolved PM mass and components were deployed from

November 2008 until December 2009 in up to 29 informatively selected locations within

each of eight Southern California communities (see Figure 1) in which CHS participants are

currently being studied. Sample locations were selected from among participants' homes

based on high or low impacts of freeway, non-freeway, and other non-traffic sources. All

samplers were deployed at the same time in each community for two consecutive two-week

periods during warm and cool times of year, for a total of four two-week sampling periods

per community. Size-resolved PM less than 0.2 (PM0.2) and 0.2 to 2.5 μm in aerodynamic

diameter (PM0.2-2.5) were collected on modified Harvard cascade impactors (Lee et al.,

2006). PM2.5 was estimated by summing the PM0.2-2.5 and PM0.2 stage data. EC was

collected from different sampling lines and measured using a thermal-optical transmittance

method. Additional information on the selection of sampling locations and on air monitoring

is available in the Online Supplement and in a previous report (Fruin et al., In Press).

2.2 Predictors of EC and PM mass

Potential predictors of EC included distance (and inverse distance) to roadways and other

sources, traffic density in distance buffers around sampling locations, dispersion modeled

traffic pollutant exposure, length of road and amount of green space in buffers around

sampling locations, population density and elevation. Predictors were linked to GPS

measurements made at the sampling locations using GIS software (ArcGIS). Details are

provided in the Online Supplement.

Annual average daily traffic (AADT) volumes on roadways and truck percentage were

obtained from the California Department of Transportation (Caltrans) milepost data for

freeways and numbered state highways for 2009 (CALTRANS, 2010) and Dynamap Traffic

Count (Version 10.2) datasets produced by TeleAtlas (Boston, Massachusetts) for other

roads. Roadway classification was based on the Functional Class Code (FCC) as found in

the Dynamap dataset. Density plots were generated within the GIS using a linear decay

function that approximated the decrease in ambient concentrations with increasing distance

away from roadways, i.e., decays to background between 150 and 300 meters (Zhu et al.,

2002).

Estimates of the contributions of local on-road motor vehicle emissions to air quality were

obtained using the CALINE4 Gaussian line-source dispersion model (Benson, 1989). The

CALINE4 dispersion model uses distance to roadways, vehicle counts, vehicle emission

rates, and meteorological conditions as inputs. Although the CALINE4 model provides

estimates of the near-roadway contribution to EC and PM2.5 (and of multiple other near-

roadway pollutants), these estimates are all highly correlated and should be regarded as

markers for the primary near-roadway mixture. Separate estimates were made for the

contribution of local traffic on freeways and on all other roadways (non-freeway roads) to
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concentrations of EC and PM2.5. Total CALINE4 was computed as the sum of the

contributions from both freeway and non-freeway roads. Total CALINE4 was highly

correlated with the freeway component of CALINE but not with the non-freeway

component of CALINE. See Online Supplement for more details.

Distances to freeways, active railways, combustion point sources (eg. a port or a refinery),

intermodal transportation facilities (for example, where train to truck transfer of cargo

occurs), and to the nearest Pacific Ocean shoreline were computed by GIS. To provide

another indicator of emissions proximity, roadway lengths within various buffer distances

(50, 100, 150, 200, 250, and 300 m radius) were computed for each FCC road class and

summed together to provide the total length in each buffer (Eckel et al., 2011).

Population density data at the block group level were obtained from US Census Bureau

(2000 data projected to year 2010) via ESRI's data repository. The population density within

300m radius buffers of each sampling location was computed as an aerial extent-weighted

average of each block group's density in the buffer.

Elevation data with ∼10m resolution were obtained from the US Geological Survey (USGS)

website (http://seamless.usgs.gov). For each sampling location, we computed a mean

elevation at a neighborhood level based on 10m-grid elevation values within a 300m buffer.

The Normalized Difference Vegetation Index (NDVI) is an indicator of live green

vegetation derived from satellite remote sensing data (Pettorelli et al., 2005) and was

included as a predictive variable as a metric of the absence of traffic and other pollution

sources.

Additional description of predictor covariates is provided in the Online Supplement.

2.3 Regional pollutants

Additional measures of regional air pollutants were continuously collected at regulatory

agency regional air monitoring stations in each of the study communities. Pollutants of

interest from these measurements included PM2.5 and NOx as described previously

(Gauderman et al., 2004). Daily measures of these regional pollutants were integrated over

the multi-week study periods and were used in the modeling as modifiers of the association

between predictors and outcome.

2.4 Statistical methods

EC and PM samples collected across seasons were averaged to derive a single eight-week

average concentration for each sampling location. Sampling locations that were not the same

across seasons were not included in the primary analyses. At schools and central sites where

duplicate measurements were made, concentrations were averaged. All eight-week averaged

concentrations were natural log transformed to help satisfy the normality and

homoscedasticity assumptions of linear regression and to ensure model predictions would be

positive.
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Because the focus of this study was to examine the factors that affected within-community

variation of fine and nanoscale EC (EC2.5 and EC0.2) and particulate mass (PM2.5 and

PM0.2), we implemented a strategy similar to the one used in Franklin et al. (2012) for NO2,

NO, and NOx. To parse out the within-community variation from the cross-community

variation, we subtracted (or “deviated”) the mean concentration of pollutant Y in community

c from the pollutant measurement Y at location i in community c (dYci = Yci -Yc). We

similarly performed a transformation of each predictor (X) previously listed (i.e. dXci = Xci –

Xc) to estimate a within-community distribution of the predictors. Some predictor variables

(CALINE4 estimates, traffic density) were positively skewed and were log transformed

(prior to deviating) to minimize the potential influence of very high values. We also

evaluated the components of within-community and between-community variation for each

pollutant using the VARCOMP procedure in SAS version 9.3 (SAS Institute Inc., Cary,

NC).

We developed both community-specific models and a combined (eight-community) model

for each pollutant. For community-specific analyses, point sources farther than 10km were

excluded from consideration. In the combined model, we weighted the distance to

intermodal facilities by dividing by the mean distance (i.e. dXci/Xc) , thus giving less weight

to communities without intermodal facilities within 10km. We excluded from the combined

models combustion point source locations with NOx emission rates that were greater than 50

tons per year as predictors because most communities had none and distance to a shoreline

was excluded because variation at the within-community scale was not meaningful for most

communities that were many kilometers inland.

We calculated Pearson correlations between each of the deviated pollutants (dYci) and

predictors (dXci) to understand how they varied together within communities. Supervised

forward selection, similar to the one used in the European ESCAPE study (Eeftens et al.,

2012a), was used to develop combined models as well as community-specific models.

Model selection began with the predictor that produced the highest adjusted R2 and that had

a beta coefficient in the expected direction. Remaining predictors were then added one at a

time until the addition did not result in at least a 1% improvement in the adjusted R2. The

direction of all beta coefficients was checked during each step of this model selection

process. From this group of predictors, those that were not significant at the 0.10 level were

dropped one at a time starting with the least significant predictor. Variables that had a

variance inflation factor (VIF) greater than 3 were also dropped from the model.

Leave-one-out cross-validated (LOOCV) and (for the combined models) leave-one-

community-out cross-validated (LOCOCV) R2 were calculated to assess how well the

models performed across communities and how transferable they might be to other

communities in Southern California. To examine the performance of the combined model in

each community, we took the predicted dYci from this model (using the LOOCV approach)

and calculated the correlation with the observed values by community. The correlation was

then squared to estimate the proportion of variation in each community that was explained

by the combined model.
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Finally, we fitted a mixed-effects model to consider the possibility that community-level

variables might modify intra-community prediction models. The community-level variables

considered included measured concentrations of PM10 and NOx from the regulatory agency

regional air stations as well as the community average of measured EC2.5 and of selected

predictors (population density, which might be an indicator of additional combustion

sources in densely populated areas, and community-average distance to the shoreline as a

proxy for meteorological characteristics that might affect the models). This mixed model

took the form dYci =α + β1*dXci + β2*dXci*C + β4*dZci + fc*dXci + ec + eci, where Y was the

outcome (EC0.2 or EC2.5), X was the predictor of interest, C was a possible community-level

modifier, Z were adjustment covariates from the combined model, and the ec and fc were

community-level random effects, assumed to be bivariate normally distributed and

independent of the subject-specific random effect eci. The parameter β2 and its

corresponding level of statistical significance was used to determine whether the intra-

community relationship between X and Y varied by C. All analyses were conducted using

SAS version 9.3.

3. Results

In this section, the sample size and distribution of each exposure outcome is described. The

distribution of key covariates and their univariate association with PM and EC by

community and size fraction is illustrated. The predictors from a unified model across all

communities and the associated heterogeneity in the cross-validated predictions from this

model in individual communities were examined, and the results from this approach were

compared with a more traditional community-specific modeling approach. In sensitivity

analyses, we examined the influence of regional pollution and other community

characteristics on the heterogeneity of effects of near-roadway traffic metrics. Because these

models will be applied to health outcomes in the CHS, a combined model of EC2.5 exposure

was developed restricted to communities in which within-community variability was well-

predicted by near-roadway traffic metrics.

3.1 Characterization of sampling sites and key predictors

Samples were collected from 228 locations across the eight communities. Of these locations,

177 remained unchanged across the entire study design and were eligible for the analysis of

eight-week average concentrations across seasons, as described in the Online Supplement.

After eliminating locations with invalid data, mostly due to equipment failures or power

interruptions, we had 148, 152, 130, and 137 locations with valid eight-week EC2.5, EC0.2,

PM2.5, and PM0.2 data, respectively.

The community-specific distribution of the average of the eight-week measurements is

shown in Figure 2 and the corresponding geometric means and coefficients of variation are

shown in Table 1. The smaller nanoscale fraction of EC (0.2μm) had a similar pattern of

within-community variability to EC2.5, based on the coefficients of variation in Table 1. The

within-community variation of EC2.5 and EC0.2 was about half that of the between-

community variation (Table 2). In contrast, the within-community variance of PM0.2 was

greater than its between-community variance. The between-community variance of PM2.5

was about ten times as large as its generally small within-community variance. However,
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one community (Mira Loma) contributed most of the between-community variability in

PM2.5 (Figure 2). There was strong correlation between EC2.5 and EC0.2 across all locations

(0.83; Supplement Table 1). The community adjusted (within-community) correlation was

almost as large (0.76). Both size fractions of particulate mass were weakly correlated with

one another and with each EC size fraction.

There was substantial variability in the distribution of the predictor variables at sampling

locations in different communities, for example for CALINE4 EC estimates and population

density, which were key explanatory variables in combined models of exposure (as

described below). The CALINE4-modeled freeway concentration varied by almost 7-fold,

considerably more than the CALINE4-modeled concentration from all other roads. Mean

population density varied by approximately 3-fold (See Figure 3).

The strongest correlations of measured EC pollutant concentrations in both size fractions

were with traffic metrics (Table 3). Correlations with freeway and with the sum of freeway

and non-freeway CALINE4 were approximately 0.7. Weaker correlations were observed

with other predictors. Correlations of traffic and other predictor variables with PM2.5 and

PM0.2 were much weaker than with EC2.5 and EC0.2 with few exceptions (e.g. NOx point

sources with PM0.2). We also examined the community-specific correlations of EC2.5 and

EC0.2 with potential predictor variables and found that there was considerable heterogeneity

across communities for each pollutant (Supplement Tables 2 and 3). For EC2.5, there were

consistently strong and common traffic associations in five of the eight communities. A

different traffic metric, truck count on the nearest freeway, was strongly correlated with

EC2.5 in Long Beach. However, in Mira Loma and San Dimas, traffic was poorly correlated

with EC2.5. EC0.2 showed strong traffic associations in all but one community (San Dimas).

3.2 Combined eight-community model

CALINE4 was included in the best combined model for EC in each size fraction, and some

form of traffic exposure was included in the best model for every pollutant studied (Table

4). After the traffic metrics, population density had the next largest effect estimates. Cross

validation R2 for both EC sizes were about 0.5, while the cross validation R2 for PM mass

were much smaller.

Although the LOOCV R2 was 51% for EC2.5 from the combined model, the performance

varied substantially when applied to each community separately. For example, the R2 of

predicted with measured EC2.5 in Santa Barbara was 82% but the model explained none of

the intra-community variation in Long Beach (Table 5). Concentrations of EC2.5 were also

poorly predicted in Mira Loma and San Dimas. The EC0.2 model predictions explained at

least 30% of the measured variation in seven of the eight communities. In contrast, the

model for PM2.5 explained 30% or more of the measured variation in only two communities

and the model for PM0.2 in no community.

3.3 Community-specific models

Models identifying community-specific predictors were fitted for EC2.5 (Table 6). These

models explained the variation in some communities, particularly San Dimas (in which

traffic metrics did not contribute to the model), Long Beach and Riverside, considerably
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better than the combined models, but the R2 was still relatively low in San Dimas.

Community-specific models did not substantially improve the R2's for EC0.2, except in San

Dimas, in which traffic metrics did not contribute to the model and community-specific R2

increased only to 0.21 (Table 7). Either freeway or (correlated) total CALINE was selected

in most community-specific models.

3.4 Sensitivity analyses

As a post-hoc analysis for EC, we developed models in just those communities in which the

combined model predicted at least 30% of community-specific variability (Table 5). For

EC2.5, a five-community model (excluding Long Beach, Mira Loma, and San Dimas) was

able to explain 66% of the measured variation (Supplement Table 4), compared with 51%

using data from all communities (from Table 4). The five-community model included total

CALINE4, population density, and NDVI as predictors. Only San Dimas was excluded from

the sensitivity model for EC0.2, which like the model for all eight communities included

only total CALINE4. The LOOCV R2 was 53%, compared with 49% in all communities

from Table 4. The LOCOCV R2's were similar to those for LOOCV.

In previous analyses examining within-community NOx variability, we observed larger

CALINE4 effects in communities with lower average concentrations (Franklin et al., 2012).

Therefore, we investigated whether the heterogeneity in traffic effect estimates in different

communities might be explained by the average of community exposures and by the average

of the continuous regional pollutant measurements made at the central site monitors during

the time of sampling in each community. We focused on the variability in effects of total

CALINE4 as this was a strong predictor in the eight-community models for both EC2.5 and

EC0.2 and was selected in a majority of the community-specific models. In some models that

included an interaction between total CALINE4 and these community-level modifiers, there

was substantial improvement in the LOOCV R2 (Table 8). In the EC2.5 model, we found

that the strongest association between total CALINE4 and EC2.5 were in communities with

low levels of regional NOx (Supplement Figure 1), while associations between EC0.2 and

total CALINE4 were strongest in communities nearest to the shoreline (Supplement Figure

2).

4. Discussion

Notable features of this analysis included (1) the heterogeneity of the strength of EC-traffic

associations across communities and the potential to partially explain this variability by

community characteristics, a finding with potentially broad implications for spatial exposure

modeling; (2) a comparison of model performance across multiple communities using two

complementary approaches (a combined model and more traditional community-specific

models); (3) models that were able to predict EC on a fine spatial scale; and (4) model

development for a novel size fraction (PM0.2 and EC0.2).

Combined prediction models that captured the fine spatial scale of EC across eight

communities were developed. The combined model R2's were substantially improved by

accounting for community characteristics that modified the effects of CALINE4 (from 51%

to 57% for EC2.5 by accounting for regional NOx and 49% to 61% for EC0.2 by accounting
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for average shoreline distance; Table 8 and Supplement Figures 1 and 2). It is possible that

in the setting of a noisy and more complex high regional pollution background that a small

local traffic effect on EC2.5 was not identified, whereas in a community with little

transported pollution, the effect of small primary traffic sources was apparent. This finding

is consistent with our previous report with a larger number of communities in which we

measured the within-community variation in NO, NO2 and NOx (Franklin et al., 2012). In

that study, CALINE4 predicted variation better in less polluted communities outside of the

Los Angeles air basin, where regional pollution is lower, than within the basin. For EC0.2, it

is not entirely clear why the effect of CALINE4 is stronger closer to the shoreline, but we

speculate that it might be due to onshore winds creating clearer gradients of EC0.2

concentrations and producing larger contrasts in communities closer to the shoreline with

cleaner background concentrations. These findings, especially the variability by regional

pollution levels, have potentially broad relevance to modeling of near-roadway pollution and

merit further study in other geographic regions.

In community-specific models, the inclusion of truck counts on the nearest freeway in Long

Beach improved the EC2.5 R2 substantially compared to the combined model (0.54 in Table

6 and 0 in Table 5). There were three freeways in Long Beach with markedly different truck

counts. However, there was little variation in truck counts within each freeway and there

was weak association of EC2.5 with distance to nearest freeway (Supplement Table 2).

Therefore, truck counts may have reflected background levels associated with the areas of

the city corresponding to the three freeways rather than a near-roadway effect of truck

exhaust. Long Beach is a coastal community with a major shipping port, refineries, and rail

activity. It has complex air flows due to convergence of westerly and southerly onshore

flows during the day. The CALINE4 estimates of near-roadway traffic impacts may be less

accurate than in other communities because (1) the modeling relied on a single

meteorological monitoring site which did not represent the complex flows and (2) the on-

road emission estimates probably underestimated the heavy truck traffic on arterial corridors

due to traffic from the port. Riverside is another relatively large community with heavy

truck traffic en route from the port to large local warehouse transfer facilities. In this

community, truck count on the nearest freeway and distance to these intermodal transfer

facilities improved EC2.5 prediction. EC2.5 variability was also explained by predictors other

than near-roadway metrics in San Dimas. Higher elevation predicted lower EC2.5 (Table 6)

and, along with vegetation, EC0.2 (Table 7). While the CALINE4 predictions capture some

aspects of meteorology, the absence of local meteorological measurements may have

contributed to the poor predictability of EC in San Dimas. This community extends into the

foothills of the San Gabriel Mountains, which may have strong and local influence on wind

speed and direction that is not identified by the two closest monitoring stations (Azusa and

Pomona, both far away from the major terrain features). A Mira Loma specific model for

EC2.5 was not reported due to a technical problem with samplers during one particle

collection wave, leaving only 13 locations for analysis. The small sample size might explain

the poor model fit of the combined model in this community.

The leave-one-community-out cross-validated R2 was approximately 50% for both EC2.5

and EC0.2, based on the combined models. However, the poor performance of these models

in some communities indicates that further study is warranted to determine how transferable
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the models could be to other Southern California communities, and whether communities to

which the combined model would not be transferable could be identified a priori based on

complexity of geographic topology, meteorology and other pollution sources (eg. San Dimas

and Long Beach). A few other studies in Europe and North America have found that

exposure models developed from land use in one city had reduced R2 when used to predict

measurements in other cities (Allen et al., 2011; Poplawski et al., 2009; Vienneau et al.,

2010).

The combined EC2.5 model predicted poorly in some communities because the near-

roadway exposure metrics that determined variability overall did not explain variability in

some communities. European studies that have examined the variability of EC2.5 through

land-use regression modeling also found measures of traffic to be important predictors but to

vary between regions (Beelen et al., 2007; Brauer et al., 2003; Carr et al., 2002; Eeftens et

al., 2012a; Hochadel et al., 2006; Morgenstern et al., 2007). In the ESCAPE study, separate

models were developed using information on local land use for each of 20 large European

cities, and cross-validated R2 for the separate models ranged from 40% to 95% (Eeftens et

al., 2012a). The R2's of 36% to 77% in the community-specific models for EC2.5 in our

communities (Table 6) were somewhat lower but, as in the European studies, were

heterogeneous across communities.

Possible reasons for the higher model R2 in ESCAPE include a wider range of measured

EC2.5 concentrations to be explained by traffic and other land uses across large metropolitan

regions in Europe, compared with the range in the generally smaller communities in the

CHS as the focus of our modeling was to predict fine spatial scales of near-roadway

mixtures (e.g. 50-150m). Comparing the exposures across the two studies is not straight

forward, because EC2.5 was assessed by light absorbance of PM2.5 in ESCAPE. Although

absorbance is highly correlated with measured EC2.5, the relationship between the two

measurements of EC can vary depending on location (Cyrys et al., 2003). The ratio of the

range to mean of PM2.5 absorbance was provided in the European study (Eeftens et al.,

2012b), and we have calculated this index in each CHS study community in order to

compare the variability across studies (Supplement Table 5). In ESCAPE, this measure of

variability ranged from 68% in Gyor (Hungary) to 235% in London/Oxford (United

Kingdom) and about half of the 20 study areas in ESCAPE had values that were greater than

100%. In contrast, only one among our eight study communities had a value greater than

100% for EC2.5 (101% in Anaheim). Levels of residential EC2.5 in European cities can be

high (Putaud et al., 2004; Putaud et al., 2010), because unlike Southern California there is a

high proportion of diesel powered passenger vehicles that travel on secondary roads in close

proximity to residences.

We observed stronger correlations between EC2.5 with freeway sources, compared with non-

freeway sources, of CALINE4-predicted concentrations. A large proportion of EC is

attributable to diesel exhaust from trucks, which are found largely on freeways in Southern

California (Kam et al., 2012; Schauer, 2003) and elsewhere (Kinney et al., 2000). A

Cincinnati study also found diesel sources, including length of bus routes and truck intensity

within 300 meters of monitoring locations, to be strong predictors of EC2.5 concentrations
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(Ryan et al., 2008). In a Boston study, the strongest traffic predictor of EC2.5 (measured via

absorbance) was length of roadway in a 200m buffer (Clougherty et al., 2008).

For EC2.5 population density contributed to the eight-community model, suggesting either

that there were other anthropogenic sources of EC2.5 or that population density provided

additional information on traffic emissions. For example, residential population might be an

indicator of “cold starts” that produce more EC after a prolonged period with the engine off.

Other studies have also found population density to predict near-roadway air pollutants

(Beelen et al., 2007; Brauer et al., 2003; Eeftens et al., 2012a). However, in our study this

variable added little to the R2 (∼1%) in models also containing total CALINE4.

To our knowledge, few previous studies have examined the within-community spatial

distribution and predictors of EC in size fractions that are smaller than 2.5μm. We

hypothesized that EC0.2 (and to a lesser extent PM0.2) would be better markers for fresh

near-roadway combustion than EC2.5, which might contain a larger proportion of regionally

transported EC. A recent study showed that a larger proportion of EC along busy roads was

found in the smaller 0.25 μm size fraction compared to the 2.5-0.25 μm size fraction and the

concentration of these fractions were highest on a stretch of freeway containing a large

number of diesel trucks (Kam et al., 2012). Contrary to our hypothesis and these previous

results, in our study the ratio of within-to between-community variance was similar for both

size fractions (Table 2), suggesting that the accumulation mode (i.e, 0.1 to 1 μm), which

should account for most of the EC0.2 mass, has a substantial transported regional component

in Southern California. EC0.2 was highly correlated with EC2.5 (Supplement Table 1), both

within communities (R=0.76) and across all measurements (R=0.83). In addition, only total

CALINE4 was a predictor of the within-community variation in EC0.2 in the combined

model. Although EC0.2 is likely to penetrate more deeply into lungs and therefore may be a

more biologically relevant exposure, these results suggest that modeling EC0.2 exposure

may provide little information for assessing health effects of within-community exposure to

primary traffic source beyond what is provided by EC2.5 (or by the CALINE4 estimate).

The within-community variability of PM0.2 was almost as large as for EC (based on

coefficients of variation in Table 1), but the cross-validation R2 for within-community

variability in PM0.2 (0.12 from Table 4) was poor. Although PM0.2 is enriched with ultrafine

particles less than 0.1 μm in diameter, which have large spatial gradients downwind from

major roadways (Beckerman et al., 2008; Zhu et al., 2002), ultrafine particles have little

mass and most of the PM0.2 mass is likely to be greater than 0.1 μm in diameter.

Determinants of PM0.2 variability merit further investigation.

The model for PM2.5, which included length of road in a 100m buffer, nearest freeway truck

count, population density, elevation and distance to the nearest point source of NOx (from

Table 4), nevertheless poorly predicted the within-community variation in our study (cross-

validated R2 0.17). This is consistent with the regional character of PM2.5 mass and with

other studies that have shown little variation with local traffic predictors (Clougherty et al.,

2008). Given the relatively smaller within- to between-community ratio in variance for

PM2.5 (Table 2), it is unlikely that predicted exposures from within-community models

would contribute substantially more to understanding health effects than measurements from
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a single central site monitoring station. Other studies have reported better R2 for PM2.5

based on traffic and land use, perhaps because they have been conducted across generally

larger metropolitan regions with both regional and local variation in PM2.5 (Brauer et al.,

2003; Eeftens et al., 2012a; Moore et al., 2007).

5. Conclusion

In Southern California, a combined model for land use effects on EC on a fine spatial scale

within multiple communities was generally robust, although there was marked heterogeneity

in effect estimates for the CALINE4 near-roadway traffic metric that could partially be

explained by regional pollutant concentrations and distance to shoreline. Predictors other

than near-roadway traffic metrics substantially improved model fit in some communities. In

addition, traffic prediction models for a novel 0.2 size fraction we had hypothesized would

be a better marker for near-roadway pollution were not substantially better than for EC2.5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Fine spatial scale EC and PM were measured in Southern Californian

communities.

• Combined multi-community prediction models were generally robust for EC.

• There was substantial heterogeneity in effects of near-roadway traffic metrics on

EC.

• This heterogeneity varied by regional pollution and distance to shoreline.

• Model R2 of a novel 0.2 μm EC fraction was not larger than for EC2.5.
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Figure 1. Map of communities

Urman et al. Page 16

Atmos Environ (1994). Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Distribution of eight-week averaged concentrations of EC and PM in 2.5 and 0.2 μm size

fractions.
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Figure 3.
Distribution of selected predictor variables by community.
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Table 2

Components of within- and between-community variance (and ratio of within- to between-community

variance).

Within Variance Between Variance Ratio

EC2.5 0.03 0.05 0.53

EC0.2 0.006 0.01 0.54

PM2.5 1.23 11.0 0.11

PM0.2 0.14 0.12 1.14
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Table 3

Pairwise correlations between deviated (community-centered) pollutants levels and potential predictors.

Predictors EC2.5
a EC0.2

a PM2.5
a PM0.2

a

CALINE4a

 Freeway 0.69 ** 0.65 ** 0.39 ** 0.29 **

 Non-freeway 0.35 ** 0.39 ** 0.16 0.16

 Total 0.72 ** 0.71 ** 0.41 ** 0.28 **

Distance

 Freeway -0.49 ** -0.48 ** -0.23 ** -0.21 *

 Large arterial roads -0.04 -0.16 -0.10 -0.01

Traffic densitya

 150m buffer 0.49 ** 0.57 ** 0.34 ** 0.14

 300m buffer 0.53 ** 0.54 ** 0.30 ** 0.15

Freeway truck count 0.17 * 0.17 * 0.26 ** 0.17

Road buffers (all roads)

 50m 0.23 ** 0.26 ** 0.22 * 0.26 **

 100m 0.33 ** 0.35 ** 0.28 ** 0.14

 150m 0.33 ** 0.37 ** 0.22 * 0.08

 200m 0.33 ** 0.37 ** 0.22 * 0.08

 250m 0.31 ** 0.35 ** 0.20 * 0.07

 300m 0.33 ** 0.34 ** 0.17 0.07

Elevation -0.45 ** -0.47 ** -0.36 ** -0.22 **

Population density (300m buffer) 0.33 ** 0.27 ** 0.30 ** 0.26 **

Normalized difference vegetation index (NDVI) -0.29 ** -0.24 ** -0.19 * -0.05

Distance to railway -0.40 ** -0.44 ** -0.18 * -0.17

Distance to intermodal facility (weighted) -0.21 * -0.26 ** -0.15 -0.14

Distance to point source of NOx (10-50 tons/yr) -0.11 -0.03 -0.04 -0.18 *

a
On log scale (and in all following tables).

*
p-value<0.05;

**
p-value<0.01
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Table 4

Prediction models across all eight communitiesa

Predictorsa EC2.5 EC0.2 PM2.5 PM0.2

Logged freeway CALINE4 0.059

Logged total CALINE4 0.255 0.291

Total length of roads in 50m buffer 0.074

Total length of roads in 100m buffer 0.039

Freeway truck count 0.041

Elevation -0.039

Population density (300 m buffer) 0.050 0.037 0.071

Distance to point source of NOx (10-50 tons) -0.048

Adjusted R2 0.53 0.51 0.27 0.16

Leave-one-out cross-validated (LOOCV) R2 0.51 0.49 0.21 0.12

Leave-one-community-out cross-validated (LOCOCV) R2 0.48 0.47 0.20 0.14

a
Reported betas are scaled to two standard deviations of deviated predictors across all eight communities as follows: 1.6 units for logged freeway

CALINE4, 1.1 units for logged total CALINE4, 116.7 meters for total length of roads in 50m buffer, 340.9 meters for total length of roads in 100m

buffer, 6250 trucks for freeway truck count, 84.5 meters for elevation, 1574 individuals/km2 for population density, and 3210 meters for distance
to point source of NOx (10-50 tons).
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Table 5

Leave-one-out cross-validated (LOOCV) R2 for prediction models in Table 4 applied to each community.

Towns EC2.5 EC0.2 PM2.5 PM0.2

Anaheim 0.64 0.91 0.26 0.03

Glendora 0.74 0.42 0.24 0.14

Long Beach 0.00 0.54 0.27 0.14

Mira Loma 0.02 0.37 0.11 0.04

Riverside 0.50 0.50 0.03 0.16

Santa Barbara 0.82 0.80 0.39 0.23

San Dimas 0.08 0.09 0.43 0.12

Upland 0.51 0.54 0.23 0.11
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Table 8

Leave-one-out cross-validated (LOOCV) R2 of various hierarchical combined modelsa.

Community level modifier of total CALINE4 EC2.5 EC0.2

No modifier (fromTable 4) 0.51 0.49

NOx central site 0.57 0.52

PM2.5 central site 0.54 0.54

Average of community EC2.5

measurements 0.52 0.50

Averaged population density 0.52 0.54

Averaged shoreline distance 0.54 0.61

a
NOx and PM2.5 measurements came from fixed monitoring sites, while EC2.5, population density, and distance to shoreline were averaged

across pollution measurement sites by community.
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