
A Flexible Spatio-Temporal Model for Air Pollution with Spatial
and Spatio-Temporal Covariates

Johan Lindström,
University of Washington, Seattle, USA. Lund University, Lund, Sweden.

Adam A Szpiro,
University of Washington, Seattle, USA.

Paul D Sampson,
University of Washington, Seattle, USA.

Assaf P Oron,
University of Washington, Seattle, USA.

Mark Richards,
University of Washington, Seattle, USA.

Tim V Larson, and
University of Washington, Seattle, USA.

Lianne Sheppard
University of Washington, Seattle, USA.

Abstract

The development of models that provide accurate spatio-temporal predictions of ambient air

pollution at small spatial scales is of great importance for the assessment of potential health effects

of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution

by combining data from several different monitoring networks and deterministic air pollution

model(s) with geographic information system (GIS) covariates. The model presented in this paper

has been implemented in an R package, SpatioTemporal, available on CRAN.

The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution

(MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to

investigate the relationship between chronic exposure to air pollution and cardiovascular disease.

In this paper we use the model to predict long-term average concentrations of NOx in the Los

Angeles area during a ten year period. Predictions are based on measurements from the EPA Air

Quality System, MESA Air specific monitoring, and output from a source dispersion model for

traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average

concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse

spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive

ability of the model is good with cross-validated R2 of approximately 0.7 at subject sites.

Replacing four geographic covariate indicators of traffic density with the Caline3QHCR

dispersion model output resulted in very similar prediction accuracy from a more parsimonious
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and more interpretable model. Adding traffic-related geographic covariates to the model that

included Caline3QHCR did not further improve the prediction accuracy.

1 Introduction

The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) is a cohort study

funded by the Environmental Protection Agency (EPA) with the aim of assessing the

relationship between chronic exposure to air pollution and the progression of sub-clinical

cardiovascular disease (Kaufman et al, 2012). Early cohort studies of associations between

exposure to air pollution and health outcomes assigned exposure based on area-wide

monitored concentrations in different geographic regions (Dockery et al, 1993; Pope et al,

2002). More recent studies have used individual exposure estimates based on various spatial

interpolation techniques (Brauer et al, 2003; Basu et al, 2000; Jerrett et al, 2005; Miller et al,

2007; Hoek et al, 2008; Puett et al, 2009).

One possible source of bias in air pollution cohort studies is uncontrolled spatial

confounding at a regional scale. Since it is only possible to adjust for spatial confounding at

a scale that is coarser than the scale of spatial variability in the predicted exposure surface

(Paciorek, 2010), improved spatial predictions that provide exposure estimates with intra-

urban variability enable us to reduce bias by adjusting for confounding at a regional scale.

Furthermore, spatial prediction errors need to be treated as measurement error in the health

effect analysis (Szpiro et al, 2011b; Sheppard et al, 2012; Gryparis et al, 2009; Carroll et al,

2006), and accurate spatial prediction at a fine scale can reduce this measurement error,

potentially decreasing bias and increasing precision. Thus, subject-specific exposures

provide greater heterogeneity in the exposure estimates, improving the health effect studies

by 1) increasing study power; 2) reducing measurement error from predicted exposures; and

3) allowing us to control for confounding by region.

A primary focus of the MESA Air study is the development of accurate predictions of

ambient air pollution at the home locations of study participants (Bild et al, 2002; Kaufman

et al, 2012). The MESA Air study includes gaseous oxides of nitrogen (NOx), particulate

matter with aerodynamic diameter less than 2.5 μm (PM2.5), as well as other gaseous co-

pollutants in six major US metropolitan areas: Los Angeles, CA; New York, NY; Chicago,

IL; Minneapolis-St. Paul, MN; Winston-Salem, NC; and Baltimore, MD. In this paper we

use 10 years of MESA Air ambient NOx data from the Los Angeles region for estimation

and evaluation of a spatio-temporal model.

Our observations of ambient outdoor NOx concentrations in Los Angeles consist of both

EPA Air Quality System (AQS) regulatory monitoring and MESA Air supplemental

monitoring (for details of the MESA Air data-set, see Cohen et al, 2009; Szpiro et al, 2010;

Sampson et al, 2011). The supplementary monitoring campaign was designed to provide

increased geographic diversity, specifically w.r.t proximity to traffic and sampling near

participant homes. To match the 2-week timescale of the supplementary MESA Air

monitoring, the AQS data was aggregated to 2-week averages (missing data handled as in

Szpiro et al, 2010); to account for skewness the resulting 2-week average NOx

concentrations were log-transformed.
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The observation locations fall into three general groups: 1) Fixed sites — AQS and MESA

Air sites that that provide long time series of 2-week averages at a few fixed locations; 2)

Home (outdoor) sites — a rotating set of four monitors, placed at a subset (roughly 10%) of

participant home locations, collecting at least two 2-week averages at each site; 3)

Community snapshot — simultaneous measurements at a large number of locations,

including roadway gradients, for three 2-week periods during different seasons. The

roadway gradients consisted of six monitors placed perpendicular to major roadways, three

on either side, at distances of approximately 30, 100, and 250 meters. A summary of

available data, including the location of monitors and examples of time-series, can be found

in Tables 1–2 and Figures 1–3.

Several general overviews of statistical modeling approaches for spatially and spatio-

temporally correlated data exist (Banerjee et al, 2004; Cressie and Wikle, 2011), including

non-separable spatio-temporal covariance functions (Gneiting and Guttorp, 2010) and

dynamic model formulations (Gamerman, 2010). There are also several methods developed

specifically for the modeling of air pollution data (Smith et al, 2003; Sahu et al, 2006;

Calder, 2008; Fanshawe et al, 2008; Paciorek et al, 2009; De Iaco and Posa, 2012).

However, these methods either require relatively complete observation matrices, or do not

allow for sufficiently complex spatio-temporal dependencies. Additionaly, the methods are

often developed for geographic regions much larger than those of interest for MESA Air.

Here we generalize a model, previously described by Sampson et al (2011) and Szpiro et al

(2010). The model uses temporal basis functions to account for the temporal variability in

data. To account for spatial variability in the temporal structure (see Figure 3), the basis

functions are modulated by spatially varying coefficients. The coefficients are modeled

using universal kriging, where the linear trend contains Geographic Information System

(GIS) covariates. The use of GIS covariates is termed “land use” regression (LUR) (Jerrett et

al, 2005; Hoek et al, 2008). Covariates used for the the Los Angeles NOx data are: 1)

distance to a major road, i.e., census feature class code A1–A3 (distances truncated to be ≥

10m and log-transformed), 2) distance to a A1 road (≥10m, log-transformed), 3) total length

of A1 and A2 roads in a circular buffer with 300 meter radius, 4) total length of A3 roads in

a 50 meter buffer, 5) distance to coast (truncated to be ≤ 15 km), and 6) average population

density in a 2 km buffer. Here census feature class code A1 roads refer to interstates and

other limited access highways; A2 are primary roads without limited access; and A3 are

secondary roads, e.g. state highways (see pp. 3-27 in US Census Bureau, 2002). Available

covariates are described in Cohen et al (2009); selection of covariates is presented in Mercer

et al (2011). Having used spatially varying temporal basis functions to account for temporal

variability (see (2) in Section 2 for details), the residuals are assumed to consist of mean

zero spatially dependent, but temporaly uncorrelated fields (Sampson et al, 2011; Szpiro et

al, 2010).

Deterministic numerical models that provide predictions of air pollution offer an alternative

to statistical modeling (Appel et al, 2008). However, comparisons between measurements

and air quality model output show varied prediction performance (Appel et al, 2008;

Hogrefe et al, 2006), and an alternative is to combine model output with observations. In

contrast to existing studies (Fuentes and Raftery, 2005; Berrocal et al, 2010), which combine
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observations with output from grid-based models, we have here opted to combine our

observations with the output from a point prediction model (Caline3QHCR, Eckhoff and

Braverman, 1995, hereafter called Caline). Given locations of major sources and local

meteorology Caline uses a dispersion model to predict how nonreactive pollutants travel

with the wind, providing hourly estimates of air pollution at distinct points. The Caline

predictions used here are based on estimates of traffic density on major roads in the Los

Angeles area (see Wilton et al, 2010; Lindström et al, 2011, for details).

The main contributions of this paper are: 1) extending the model presented in Szpiro et al

(2010) to include spatio-temporal covariates; 2) applying the model to the MESA Air NOx

dataset to generate predictions for Los Angeles; 3) evaluating the model’s ability to predict

long term averages using a cross-validation strategy that accounts for the complex MESA

Air monitoring design and that allows us focus on spatial predictive ability by accounting

for temporal effects; 4) investigating the benefit of Caline as a spatio-temporal covariate and

Caline’s ability to replace traditional LUR covariates; and 5) reducing the computational

burden of the model and evaluating how the computational burden scales with the number of

observations. The model presented here has been implemented in an R package,

SpatioTemporal, which is available from http://cran.r-project.org/package=SpatioTemporal

The model is presented in Section 2. Computational considerations and parameter estimation

are discussed in Section 3. Model validation, including considerations for the unbalanced

dataset, is presented in Section 4. In Section 5 we apply the model to NOx data from Los

Angeles, and investigate the contribution from Caline. Section 6 concludes with a

discussion.

2 Model

We let C(s, t) denote the observed concentration of NOx at location s and time t and take y(s,

t) = log C(s, t). N denotes the total number of observations; n the number of observation

locations; and T the number of observation time points. Due to our unbalanced sampling, N

⪡ nT. Our goal is to predict concentrations at unobserved locations and/or times. We denote

these unknown values by C*(s, t). For convenience important notation is summarized in

Table 3.

The spatio-temporal process is decomposed into

(1)

where μ(s, t) is the mean process and ν(s, t) is the space-time residual process.

The mean process is modeled as

(2)

where  are spatio-temporal covariates with coefficients  is a set of

smooth temporal basis functions, with f1(t) ≡ 1 and f2(t), …, fm(t) having mean zero; and the
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βi(s) are spatially varying coefficients for the temporal trends. Typically the number of basis

functions, m, will be small. The basis functions are derived as smoothed singular vectors

using observations at the fixed sites; the basis functions are treated as fixed and known for

the modeling (see Fuentes et al, 2006; Szpiro et al, 2010; Sampson et al, 2011, for details).

We model the spatial fields of βi-coefficients using universal kriging (Cressie, 1993). The

trend in the kriging is constructed as a linear regression on (geographic) covariates. The

spatial dependence structure is provided by a set of covariance matrices, ∑βi(θi),

parameterized by θi. The resulting models for the β-fields are

(3)

where Xi are n × pi design matrices, αi are pi × 1 matrices of regression coefficients, and

Σβi(θi) are n × n covariance matrices. We assume the βi(s) fields are, a priori, independent of

each other.

The residual space-time process is modeled using mean zero Gaussian fields that are

temporally independent, but spatially dependent

(4)

the size of each covariance matrix, , is given by the numbers of observations, nt, at

time t. The covariance matrices depend on parameters, θν. Note that only the number of

elements in , not the parametric functional form, varies with t. The covariance

matrices in (3) and (4) are not required to share a common covariance model, allowing for a

very flexible model.

The parameters of the model consist of: regression parameters for the spatio-temporal and

geographic covariates, γ = (γ1, …, γL)T and ; covariance parameters for

the βi-fields, θB = (θ1, …, θm); and covariance parameters of the spatio-temporal residuals,

θν. To simplify notation we collect the covariance parameters into Ψ = (θ1, …, θm,θν).

Combining (1) and (2) our model becomes

(5)

Following Szpiro et al (2010), we introduce the N × 1-vectors Y = y(s, t) and V = ν(s, t) by

stacking the elements into single vectors varying first s and then t; a mn × 1-vector B =

(β1(s)T, …, βm(s)T)T; and a sparse N × mn-matrix F = (fst,is’) with elements

Lindström et al. Page 5

Environ Ecol Stat. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



To accommodate the spatio-temporal covariates we also introduce a N × L-matrix , with

each row containing covariates for the space-time location of the corresponding row in Y.

Using these matrices we rewrite (5) as

(6)

where B ∈ N (Xα,ΣB(θB)) and V ∈ N (0, Σν(θν)); X, ΣB(θB), and Σν(θν) are block diagonal

matrices with diagonal blocks , and  respectively. Noting

that (6) is a linear combinations of independent Gaussians we introduce the matrices

(7)

and write the distribution of Y as

(8)

3 Computational Considerations

Parameter estimates can now be obtained by maximizing the likelihood of (8), using a

suitable optimisation algorithm (e.g. L-BFGS-B, see Byrd et al, 1995). However, for large

datasets estimation using naïve maximum likelihood (ML) takes considerable time. There

are two considerations for reducing the esimation time: 1) reducing the number of

parameters, and 2) utilizing the block structure of Σν(θν) and ΣB(θB) to reduce the

computational burden.

Replacing γ and α with their generalised least squares estimates (see Lindström et al, 2011,

for details) gives the profile likelihood of (8)

(9)

To utilize the block diagonal structure of Σν(θν) and ΣB(θB) we rewrite (9) as

(10)

where const. does not depend on Ψ, and

(11a)

(11b)
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(11c)

Proof of equality between (9) and (10) is given in Appendix A.

At a first glance it is not obvious that (10) offers any computational advantages over (9). The

matrix  in (9) is a dense N × N-matrix, implying that the computational effort of

calculating  grows at a rate of ; the corresponding term in (10),

consists of the determinant of two block diagonal matrices and the determinant of a dense

mn × nm-matrix. The computational effort for the three components scales are

, and  For our data the term requiring  computer

time will be the most time consuming. Due to the long time period covered and the few

temporal basis functions needed we have mn ⪡ N, implying that (10) should be considerably

faster to evaluate than (9). With a more balanced sampling design the term requiring

 is likely to dominate. Since , (10) is still faster to evaluate

than (9). Similar arguments can be made for the rest of the terms in the log-likelihood, and

the overall computational cost of (9) grows as , compared to  or

 for (10). As an example, evaluating the likelihood once for our 5181

measurements in Los Angeles takes 92 seconds using (9), compared to 2.5 seconds for (10)

(using an Intel Xeon E5410 processor). A comparison of evaluation times is presented in

Figure 4. The Figure illustrates the slower increase in evaluation time as a function of the

number of observations for (10) compared to (9); it also shows the “jumps” in evaluation

time for (10) when the number of locations increase.

The model (5) can also been seen as a multi-level mixed effects model (see e.g. Ch. 2 in

Pinheiro and Bates, 2009); this formulation is unlikely to offer any computational gains

compared to the approach above. Alternatively, recent developments in modelling of large

datasets could be used to improve computational effeciency. Examples include Gaussian

Markov Random Fields (Lindgren et al, 2011), predictive process (Banerjee et al, 2008) and,

fixed rank kriging (Cressie and Johannesson, 2008); these have all been extended to spatio-

temporal data (Cameletti et al, 2013; Finley et al, 2012; Kang et al, 2010). However, these

extensions are, essentially, time dynamical models and do not allow for the complex

structure, with temporal basis functions, in (2). For composite likelihood methods (Stein et

al, 2004) it is non-trivial to construct blocking strategies in space and time that account for

the dependencies induced by the temporal basis functions.
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4 Model Validation

Having obtained estimates for the unknown parameters the next step is to predict

concentrations at unobserved locations and times. Given parameter estimates predictions and

prediction uncertainties for the log-concentrations, y*(s, t), are obtained as conditional

expectations and variances for a multivariate Gaussian (8). Unobserved NOx concentrations

are then obtained as C*(s, t) = exp y*(s, t), and validation is based on the NOx-data.

We assess the predictive accuracy of our model using cross-validation, taking into account

the challenges presented by the unbalanced structure of our observations. The primary

interest of MESA Air is the long term average exposure, leaving us with the problem of

trying to validate the spatial predictions of long term averages based, in most cases, on a few

observations at each location. Only a few sites (the 25 fixed sites) have time-series long

enough for us to compute long-term averages; additionally, the fixed sites have less

heterogeneity in their surrounding environment but larger spatial spread than the remaining

observation locations.

To make the fullest use of available data we employ three different cross-validation

strategies: 1) leave-one-out cross-validation for the fixed sites, 2) 10-fold cross-validation

for the community snapshots (ensuring not to split road gradients between groups); and 3)

10-fold cross-validation for the home sites. For each of the scenarios above, all remaining

data are used to estimate parameters and to predict at the left out locations. Given the

predictions and prediction variances we compute the coverage of 95% prediction intervals,

the root mean squared error (RMSE) and the corresponding cross-validated R2.

For the first cross-validation approach we validate the model by comparing predicted and

observed concentrations, as well as the predicted and observed long-term average

concentration at each location. The long-term averages (both true and predicted) are

computed by summation over only those time points for which we have observations,

followed by division by the number of terms in the sum,

The cross-validated R2 are computed as (Szpiro et al, 2011a)

(12)

For the community snapshot, out-of-sample predictions are calculated by leaving out the

same sites during all three seasons. However, when assessing the spatial predictive ability of

our model, we compute separate RMSE and R2 values for each season. This has the added

benefit of providing information regarding the model’s spatial predictive ability at different

times.
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For the home sites our measurements are spread over both time and space, making the

situation more complicated. We compute the RMSE value as usual, but for R2 we compare

our predictions to a few simple reference models that account for (some) temporal

variability. This is done by replacing Var(C(s)) in (12) by the RMSE of the reference

models. Reference models used are: 1) the spatial average at each time point based on

observations at fixed sites; 2) the observation from the closest available fixed site; 3) smooth

temporal trends fitted to data from the closest fixed site. We denote the three reference

models as average, closest, and smooth. The resulting R2’s represent the improvement in

predictions provided by our model, compared to central site or nearest neighbor schemes

commonly used in epidemiology studies (Pope et al, 1995; Miller et al, 2007).

5 Los Angeles NOx Data

We now use the model to predict ambient outdoor NOx concentrations in Los Angeles. We

also investigate whether the inclusion of Caline as a spatio-temporal covariate can, a)

improve the predictions; or b) act as a replacement for the road covariates. Replacing several

road covariates with a single spatio-temporal covariate simplifies the model and potentially

reduces the number of unknowns. To evaluate this, four different models are examined: 1)

using all geographic covariates, 2) using geographic covariates and Caline, 3) using only

non-road covariates, and 4) using non-road covariates together with Caline.

Several different options for including the Caline predictions in the spatio-temporal model

have been considered. Since our observations are log-transformed, a similar transformation

of Caline seems reasonable. However, Caline predictions are based on the contribution from

major roads so we use a log(x + 1) transformation to accommodate zero predictions at sites

that are far from major roads. A second issue is that the unbalanced monitoring scheme may

cause the model to emphasize Caline’s temporal predictive ability over its spatial features.

The results presented here use a mean separated Caline, constructed by first computing the

temporal average at each location , where

. The average is then subtracted to create a mean-zero spatio-

temporal covariate as . The average, , is added as a

geographic covariate (a column of each Xi in (3)) and  is used as a spatio-temporal

covariate (  in (2)), allowing us to separate Caline’s spatial and temporal contributions to

the predictions. Studies with no or alternate transformations, as well as a non-mean

separated Caline gave results similar to, or worse than, those presented here.

For this data we use exponential covariance functions for all covariance matrices; the

covariance functions are characterized by range ϕ, partial sill σ2, and nugget τ2. To obtain a

smooth mean field in (2) we assume that the nuggets of the βi-fields are zero. The unknown

parameters, Ψ, are estimated by maximizing (10), using the L-BFGS-B algorithm (Byrd et

al, 1995) in the optim() function in R (R Development Core Team, 2008).

For the first two models cross-validation showed no improvment when including Caline (see

Table 4) and most of the estimated parameters are very similar (see Table 5). out-of-sample

predictions of long-term averages at the AQS and MESA fixed sites are seen in Figure 5.
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Figure 6 shows predictions of time-series at three fixed sites. For both models the predictive

ability at MESA home sites is very good, with R2 ≈ 0.9. Even after the use of a simple

reference model to account for the temporal variability, the spatial predictive ability remains

high, with R2 ≈ 0.67 − 0.76. The lowest R2 values were obtained for the summer snapshot

(R2 ≈ 0.52) and long-term averages (R2 ≈ 0.58); the summer snapshot also had the lowest

RMSE values, indicating that there is little variability to be explained. For the long-term

averages, several AQS sites are far from other sites or at the edge of our area of interest (see

Figure 2); we expect cross-validation at these sites to exhibit larger prediction errors than at

participant home locations.

For the two models (3 and 4) that excluded the GIS road covariates the model including

Caline performed uniformly better in cross-validation (see Table 6 and Figure 5). In fact,

predictions from model 4 are nearly comparable to those obtained with models 1 and 2. This

suggests that Caline may provide an interpretable replacement for GIS road covariates.

In all four cases uncertainty estimates are reasonable, with the coverage for 95% prediction

intervals varying from 90% to 99%.

6 Discussion

In this paper we have expanded the spatio-temporal framework introduced by (Sampson et

al, 2011; Szpiro et al, 2010) to allow for spatio-temporally varying covariates, such as the

output from a deterministic air pollution model. The computational feasibility of the model

has been improved through the use of profile likelihood, and by rewriting the log-likelihood

to exploit the model structure. The cost of evaluating the simplified likelihood depends

primarily on the number of observation locations, rather than the total number of

observations.

The proposed model assumes that the temporal basis functions and spatio-temporal

covariates in (2) account for the temporal structure in data. This assumption is reasonable

since 1) our focus is on prediction of long term averages and 2) Sampson et al (2011)

showed that, for a 2-week time scale, the basis functions capture most of the temporal

structure in our data. Expanding the model to allow for temporal dependencies in the

residual ν-fields is possible, but would remove the block structure of Σν(θν). However, any

method (e.g. tapering, see Furrer et al, 2006) that leaves us with a sparse Σν(θν) matrix

would allow for efficient computations of the inverse, thus benefiting from the rewrite in

(9).

The complex spatio-temporal structure of the data in our example (Figure 1) raised questions

of how to validate models in the presence of unbalanced observations. The issue is further

complicated by MESA Air’s primary interest in predictions of long term averages. To

address this a cross-validation setup, that accounts for the temporal variability, was

introduced. The resulting model provides a flexible way of combining observations with the

output from deterministic air quality models.

The model was applied to ambient MESA Air NOx data in Los Angeles. In a cross-

validation study the model showed good predictive power, especially at participant home
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locations. The study also indicated that the inclusion of Caline did not improve overall

prediction accuracy, but did suggest that Caline may provide an efficient replacement for

GIS road covariates.

That Caline provided essentially no improvement, when combined with traditional road

covariates, came as somewhat of a surprise to the authors, especially since a previous pilot

study (Wilton et al, 2010) indicated improved prediction performance for the summer

snapshot. Our results also contrast with other studies that have shown improvement in air

quality predictions by combining observations with output from deterministic models

(Fuentes and Raftery, 2005; Berrocal et al, 2010). These studies do not use any GIS

covariates, but do use output from grid based models over large geographic areas, often

several states. These differences make it difficult to translate their results to our limited

geographic areas and study design.

The overall prediction results are encouraging and indicate that the model will be able to

provide the basis for high quality predicted exposures in MESA Air health analyses.
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A Proof of Equivalence for the Simplified Likelihood

To prove the equivalence of the two likelihood forms (9) and (10) we need the following:

Lemma 1

If Σ1 and Σ2 are two nonsingular matrices of size n1-by-n1 and n2-by-n2 respectively, and A

is a n2-by-n1 matrix, then:

(Thm. 18.1.1 Harville, 1997)

Lemma 2

The Woodbury identity (Thm. 18.2.8 Harville, 1997):

If A and B are two invertable matrices of size n-by-n and p-by-p respectively, and C is an

arbitrary n-by-p matrix, then
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Rearranging the terms and multiplying with A from both sides, Lemma 2 becomes

(13)

Lemma 3

The Searle identity (Thm. 18.2.3 Harville, 1997):

If A, B are matrices of size p-by-n and n-by-p respectively, I denotes identity matrices of

appropriate size, and (I + AB) is nonsingular, then

Lemma 4

Blockwise inversion (Thm. 8.5.11 Harville, 1997):

Let A, B, C, and D be block matrices, with A and (D – CA−1B) being nonsingular, then

To make the notation clearer we suppress the dependence on Ψ. Superscripts above equality

signs denote the identities used in each step.

For the determinant in (9) we have

proving equality with the determinants in (10).

For the quadratic form in (9) we first note that

(14a)

(14b)

(14c)

Using (14) we have that
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(15a)

(15b)

For the quadratic form in (9) we have

showing that the quadratic forms in (9) and (10) are equal.
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Figure 1.
Schematic image of the data available for analysis. Each measurement is represented by a

point in space and time. AQS provides temporally rich observations at 20 locations. During

the second half of our modeling period, additional temporally rich data are provided by 5

MESA fixed sites. Spatial data are provided by the three MESA snapshot campaigns, which

monitored a total of 177 locations at three time points, and by MESA home sites that

consists of four monitors alternating among 84 locations.
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Figure 2.
Map illustrating the location of our measurements. The collocated AQS and MESA fixed

site are north of the Lynwood AQS site; the MESA fixed site is partially obscured by the

AQS sites.
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Figure 3.
Example time series of log-transformed 2-week average NOx concentrations at three AQS

monitors and one home site in the Los Angeles area. The fit of our smooth temporal basis

functions to the data, and the transformed Caline predictions are also shown. For the home

site we have used the smooth temporal fit at the closest AQS monitor.
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Figure 4.
Comparison of the time needed for one evaluation of the naïve profile likelihood (9) and

simplified version (10). The full dataset, 5182 observations from 286 locations and 280 time

points, was divided into smaller pieces by dropping either locations and/or time-points to

examine how fast the evaluation time would grow as the dataset was expanded. Evaluation

time for the full likelihood grows as N2.8 (the fitted line) close to the expected theoretical

value of . For a fixed number of locations evaluation time for the simplified version

grows considerably slower than N3.
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Figure 5.
Out-of-sample predictions for the long-term averages at the AQS and MESA fixed sites.

Results for the model both including the road covariates (left) and without the road

covariates (right) are given; for both cases predictions without and with Caline are shown.
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Figure 6.
Example of out-of-sample predictions of the log-transformed 2-week average NOx

concentrations at three AQS monitors and one home site in the Los Angeles area.

Observations, predictions, and 95% prediction intervals are shown.
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Table 1

Summary of observations used for modeling

Type of site No. of sites Start date End date No. of measurement

AQS 20 1999–01–13 2009–09–23 4178

MESA fixed 5 2005–12–07 2009-07-01 399

MESA home 84 2006–05–24 2008–02–13 155

MESA snapshot1 177 2006–07–05 2007–01–31 449

1
Snapshot measurements where carried out during three 2-week periods centered on the Wednesdays of 2006–07–05, 2006–10–25, and 2007–01–

31
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Table 2

Summary statistics for the data, both on the original ppb scale and on the logscale. The variability in the mean

between the three snapshots is due to the seasonal patterns in NOx.

ppb NOx log(ppb NOx)

Mean Std. Mean Std.

AQS and MESA fixed

 2-week 55.5 39.9 3.77 0.724

 long-term avg. 56.0 18.4 3.77 0.394

Snapshot

 2006–07–05 34.2 11.5 3.47 0.387

 2006–10–25 75.1 23.5 4.27 0.317

 2007–01–31 95.3 27.0 4.51 0.299

Home sites 45.6 28.3 3.63 0.642
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Table 3

Important notation and symbols

Symbol Meaning

C(s, t) Observed 2-week average concentrations.

C*(s, t) Unobserved 2-week average concentrations.

y(s, t) log C(s, t).

μ(s, t) Mean field part of y(s, t).

ν(s, t) Space-time residual part of y(s, t).

fi(t) Smooth temporal basis functions.

βi(s) Spatially varying regression coefficients, weighing the i:th temporal
trends differently at each site.

Xi Land use regression (LUR) basis functions for the spatially varying
regression coefficients in βi(s).

α i Regression coefficients for the i:th LUR-basis.

Ml(s, t) Spatio-temporally varying covariates.

γl Regression coefficient for the spatio-temporally varying covariates.

N No. of observations.

T No. of observed time-points.

n No. of observed sites.

nt No. of observations at time t. Note that N = ∑t=1
T nt  and nt < n ∀t.

m No. of temporal basis functions (incl. intercept).

L No. of spatio-temporal model outputs.

pi No. of LUR-basis functions for the i:th temporal-basis function (incl.
intercept).
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Table 4

Cross-validation results for the models with all GIS covariates, without and with Caline. The table gives

RMSE, R2, and coverage for 95% predictions intervals for the out-of-sample predictions. For the Home sites

the three adjusted R2, showing improvement over simple temporal models, are also provided. All values are

computed on the back transformed scale (ppb NOx).

With road covariates

No Caline Caline

RMSE R 2 cov. RMSE R 2 cov.

AQS and MESA fixed

 2-week 17.90 0.80 0.91 18.12 0.79 0.90

 long-term avg. 11.97 0.58 12.26 0.56

Snapshot

 2006–07–05 7.94 0.52 0.93 7.62 0.56 0.95

 2006–10–25 13.32 0.68 0.97 13.32 0.68 0.95

 2007–01–31 15.69 0.66 0.99 15.77 0.66 0.98

Home sites 9.34 0.89 0.97 9.06 0.90 0.95

 average 0.67 0.69

 closest 0.74 0.76

 smooth 0.74 0.76
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Table 5

Estimated parameters for the models with all GIS covariates: no Caline compared to Caline. Parameter values

and standard errors based on the observed information matrix are given

No Caline Caline

Est. Std. err. Est. Std. err.

Average level

α1 — Regression coefficients

 Intercept 3.78 0.174 3.42 0.207

 Distance to road (log10 m) −0.0801 0.0236 −0.0665 0.0237

 Distance to A1 roads (log10 m) −0.152 0.0323 −0.0630 0.0431

 A1 & A2 in 300m buffers (km) 0.0501 0.0253 0.0315 0.0256

 A3 in 50m buffers (km) 0.689 0.215 0.781 0.214

 Distance to coast (km) 0.0330 0.0102 0.0318 0.00990

 Population (1000/2km buffer) 0.00324 0.00117 0.00335 0.00113

 Average log(Caline + 1) 0.0789 0.0259

θ1 — Covariance parameters

 Log Range (log km) 1.86 0.388 1.84 0.384

 Log Sill −2.86 0.287 −2.92 0.283

1st temporal trend

α2 — Regression coefficients

 Intercept −0.793 0.139 −1.00 0.187

 Distance to road (log10 m) 0.00244 0.0259 0.0137 0.0254

 Distance to A1 roads (log10 m) 0.0120 0.0274 0.0715 0.0379

 A1 & A2 in 300m buffers (km) 0.0437 0.0227 0.0345 0.0214

 A3 in 50m buffers (km) 0.136 0.255 0.178 0.245

 Distance to coast (km) 0.0221 0.00720 0.0188 0.00753

 Population (1000/2km buffer) −0.00127 0.000782 −0.000949 0.000735

 Average log(Caline + 1) 0.0533 0.0227

θ2 — Covariance parameters

 Log Range (log km) 2.77 0.621 3.34 0.831

 Log Sill −3.82 0.512 −3.55 0.740

2nd temporal trend

α3 — Regression coefficients

 Intercept −0.142 0.132 −0.204 0.189

 Distance to road (log10 m) 0.0503 0.0333 0.0532 0.0329

 Distance to A1 roads (log10 m) −0.0430 0.0326 −0.0263 0.0479

 A1 & A2 in 300m buffers (km) −0.0310 0.0281 −0.0412 0.0264

 A3 in 50m buffers (km) 0.338 0.322 0.412 0.309

 Distance to coast (km) 0.0130 0.00548 0.0121 0.00581

 Population (1000/2km buffer) −0.0000833 0.000924 0.0000423 0.000896
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 Average log(Caline + 1) 0.0185 0.0290

θ3 — Covariance parameters

 Log Range (log km) 2.40 0.646 2.68 0.724

 Log Sill −4.78 0.436 −4.70 0.515

γ Mean centered log(Caline + 1) 0.0677 0.0151

θ ν

 Log Range (log km) 4.39 0.0938 4.38 0.0935

 Log Sill −3.25 0.0617 −3.25 0.0614

 Log Nugget −4.29 0.0415 −4.30 0.0418
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Table 6

Cross-validation results for the model without and with Caline, but excluding all road covariates. The table

gives RMSE, R2, and coverage for 95% predictions intervals for the out-of-sample predictions. For the Home

sites the three adjusted R2:s, showing improvement over simple temporal models, are also provided. All values

are computed on the back transformed scale (ppb NOx)

Without road covariates

No Caline Caline

RMSE R 2 cov. RMSE R 2 cov.

AQS and MESA fixed

 2-week 20.42 0.74 0.91 18.40 0.79 0.92

 long-term avg. 15.77 0.27 12.74 0.52

Snapshot

 2006-07-05 9.68 0.29 0.93 8.26 0.48 0.95

 2006-10-25 16.51 0.51 0.98 14.90 0.60 0.95

 2007-01-31 20.45 0.43 0.98 18.19 0.55 0.96

Home sites 11.00 0.85 0.97 9.31 0.89 0.95

 average 0.54 0.67

 closest 0.65 0.75

 smooth 0.64 0.75
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