
Spatial health effects analysis with uncertain residential
locations

Brian J. Reich1, Howard H. Chang2, and Matthew J. Strickland3

1Department of Statistics, North Carolina State University

2Department of Biostatistics and Bioinformatics, Emory University

3Department of Environmental Health, Emory University

Abstract

Spatial epidemiology has benefited greatly from advances in GIS technology, which permits

extensive study of associations between various health responses and a wide array of socio-

economic and environmental factors. However, many spatial epidemiological data sets have

missing values for a substantial proportion of spatial variables, such as the census tract of

residence of study participants. The standard approach is to discard these observations and analyze

only complete observations. In this paper, we propose a new hierarchical Bayesian spatial model

to handle missing observation locations. Our model utilizes all available information to learn

about the missing locations, and propagates uncertainty about the missing locations throughout the

model. We show via a simulation study that this method can lead to more efficient

epidemiological analysis. The method is applied to a study of the relationship between fine

particulate matter and birth outcomes is southeast Georgia, where we find smaller posterior

variance for most parameters using our missing data model compared to the standard complete

case model.
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1 Introduction

Spatial epidemiology has benefited greatly from advances in GIS technology. GIS facilitates

the study of associations between various health responses and a wide array of socio-

economic and environmental factors. Despite improvements in data collection methods and

GIS technology (Henry and Boscoe, 2008; Goldberg et al., 2008), missing data remain

prevalent in spatial health data sets. In this paper, we specifically address the problem of

study participants with uncertain residential locations.

This work is motivated by an analysis of the effects of fine particulate matter on preterm

birth and low birth weight in southern Georgia. Figure 1 shows the 24 counties in the study

domain, as well as the 177 census tracts in these mostly rural counties. While the majority of

air pollution and health studies have been conducted in urban communities, there is a
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growing interest to examine the effects of air pollution in rural communities. This is because

rural communities often have a different susceptible population composition and are

exposed to a different pollution mixture. In our data set, several predictors are known at the

census tract level, including the variable of interest, fine particulate matter exposure, and the

tract’s median income. The county of residence is known for all mothers, however, for 9.7%

of the mothers in the study the census tract of residence is unknown (ranging by county from

2.7% to 57.1%). This uncertainty in the spatial location poses challenges in the health

model, as it is not clear how to assign exposure to these mothers, or how to model variability

in risk across tracts. The ability to utilize health data with uncertain residential location is

particularly important in this setting because missing geocodes are most prevalent in rural

regions, which have considerably smaller sample size compared to urban communities.

There is an extensive literature on missing data methodology, for example, Little and Rubin

(2002) and Enders (2010). However, relatively few missing data methods are available that

are specifically tailored for spatial data. Recently, methods for preferential sampling have

been developed for cases where the locations of the observations are selected in a way that

depends on spatial distribution of the response (Diggle et al., 2010; Pati et al., 2012). In

models for these data, the locations are modeled jointly with the response. Although the

spatial locations are modeled statistically, unlike our application the data sets considered in

preferential sampling do not have missing values. In similar work, Reich and

Bandyopadhyay (2010) model spatial data with predefined measurement locations, but with

missing responses. In this approach, the location of missing responses are allowed to depend

on the true value of the spatial process being measured. The situation addressed here differs

from Reich and Bandyopadhyay (2010) in that the location of the observations is missing,

but not the response. Most similar to our method is Cressie and Kornak (2003), who

consider the case of a continuous spatial domain and discuss the effects of adjusting for

measurement error in the sampling locations in the usual geostatical/Kriging setup. Our case

is different in that we are dealing with areal data, and thus the missing locations are

restricted to a finite set of indices, and we use covariates to inform about the missing data

process.

In this paper, we propose a hierarchical Bayesian approach that accounts for uncertainty in

the residential location of the study participants. We treat the missing locations as unknown

random variables in the Bayesian model. By modeling these data hierarchically, we exploit

all available information to inform about the missing locations, including the mother’s

characteristics (e.g., race and martial status), census information (e.g., the percent married

and racial composition of the census tracts), and the proportion of missing data in each

census tract. By modeling the data using Bayesian methods, uncertainty about the missing

locations is naturally propagated throughout the model, including the posteriors of the

parameter relating fine particulate matter with the health response, which is the primary

interest. The proposed approach also has the advantage of being a relatively straight-forward

addition to standard computational algorithms used for Bayesian spatial epidemiology

models. In particular, it can be implemented using the popular software OpenBUGS.

The remainder of the paper proceeds as follows. Section 2 describes the motivating data.

The statistical model and corresponding computational details are given in Sections 3
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through 5. In Section 6, we conduct a simulation study to illustrate the benefits of the

proposed approach compared to the standard method. The method is applied to Georgia

birth data in Section 7. Section 8 concludes.

2 Description of the Georgia birth data

Birth record data were obtained from the Office of Health Indicators for Planning, Georgia

Division of Public Health. The study region consists of 24 counties (177 census tracts)

located in southeastern Georgia (Figure 1). We considered only singleton births without

structural birth defects conceived from the period January 1, 2002 to December 31, 2005.

Gestational age was defined as the number of completed weeks between the reported date of

last menstrual period and the date of birth. We removed records with birth weight less than

400g and records with gestational age less than 26 weeks or greater than 44 weeks. We

restricted the analysis to non-Hispanic white and non-Hispanic black mothers between the

age of 15 and 44. The data are summarized in Table 1.

Daily ambient concentrations of fine particulate matter (PM2.5) were obtained from the

Statistically Fused Air Quality (McMillan et al., 2009) database (FSD) available at the EPA

website, http://www.epa.gov/heasd/sources/projects/CDC/index.html. The FSD database

contains predicted daily PM2.5 concentrations over contiguous 12km by 12km grid cells.

The predictions are based on a Bayesian space-time hierarchical model that combines (1)

observed PM2.5 levels from the monitoring network; and (2) deterministic outputs from the

Models-3/Community Multiscale Air Quality model. To account for spatial misalignment

between the grid cells and census tract boundaries, we first calculated the proportion of the

tract area that fall within each FSD grid cell. Then daily tract-level values were obtained by

taking a weighted average.

The following tract-level population statistics were obtained from Census 2000 for females

between the age of 15 to 44: total population count, proportion of race black, and the mean

and standard deviation of the age distribution. The median personal income in 1999 and the

proportion who were married were also obtained for females, without the age restriction, due

to limited census data.

3 Hierarchical model for missing spatial locations

Let Yi be the binary indicator of low birth weight or preterm birth for birth i = 1, …, n, and si

∈ {1, …, N} be the index of the residential region (e.g., census tract) for observation i. We

use the binary regression model

(1)

where g is a link function (e.g., logit or probit), α = [α(1), … , α(N)]T are spatial random

effects to control for unmeasured spatial baseline risks and γ= (γ1, …, γp)T, ω = (ω1, …,

ωw)T, and β = (β1, …, βq)T are fixed effects. We separate the predictors into three types: Xi

are descriptions of the ith birth and are known even in the absence of si (e.g., the mother’s

age or education attainment), W(si) are descriptions of the mother’s residential region (e.g.,
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the tract’s median income) and are the same for all mothers in region si, and Zi(si) are

covariates that depend on the mother’s region and vary for mothers in region si (e.g., the

average PM2.5 concentration in region si over mother i’s first trimester).

Our focus is to develop a statistical model for the case where a significant proportion of the

residential locations are missing. Let δi be the binary indicator of a missing value. For the

majority of observations, GIS calculates si accurately and thus δi = 0. For some

observations, GIS is unable to specify si and thus δi = 1. Fortunately, in most such cases, we

are able to place si into a subset of indices Si ⊂ {1, …, N}, e.g., Si may be the indices of the

census tracts within a county if the mother’s residential county can be obtained directly from

the birth certificate or by geocoding using ZIP code. Clearly this complicates the spatial

model, as it is unclear how to assign these observations a spatial random effect. This

uncertainty also affects the regression portion of the model, since some of the predictors

depend on si.

We account for uncertainty in the residential region using Bayesian modeling. The spatial

index si is treated as an unknown parameter in the hierarchical model. To exploit all

available information that can be used to impute the missing locations, we specify the joint

distribution of all data for observation i, [Yi, δi, Xi, W, Zi, si]. To specify the model, without

loss of generality, we define the joint distribution as the product of three conditional

distributions,

(2)

As is often the case in missing data modeling, assumptions are required about the missing

data mechanism. A key assumption in our analysis is that given the spatial location and the

predictors, the birth outcome is independent of the missing data indictor, i.e.,

(3)

This seems reasonable in our setting because many GIS errors are caused by unmatched

addresses in geocoding, for example, due to missing street numbers, and many variables

known to be associated with coding errors (Kravets and Hadden, 2007) are provided by the

birth records and included in Xi.

The models for the three conditional distributions in (2) are described below. The model for

Yi|Xi, W, Zi, si is given by (1). A flexible model for the missing data mechanism [δi|Xi, W,

Zi, si] is

(4)

where a = [a(1), …, a(N)]T are spatial random effects and b and c are regression parameters.

We exclude time-varying coefficients Zi from this model, since it seems unreasonable that

GIS success rate depends on time and is correlated with covariates such as ambient air

pollution.
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In some cases there may be prior information about the GIS success rate in each region

which could be incorporated in the prior for a. However, considerable effort is required to

assess GIS error rate, especially for a large study region (Strickland et al., 2007). In the

absence of prior information, it will be difficult to estimate the spatial random effects a.

Therefore, to avoid identifiability issues, we omit these random effects from the model,

giving

(5)

This probability depends on si through W(si), and therefore helps impute the missing

indices. Also, intuitively, the data provide information about c by comparing the proportion

of missing tracts in each county with the average W over census tracts in the county. For

these reasons, we select (5) as the missing data model in Section 7.

Next we describe the model for [Xi, W, Zi|si]. The spatial covariate W is considered fixed

and thus not modeled stochastically. For the GA data, there are no missing values or

uncertainty in Xi. However, it is still important to model their distribution given si because

this provides information to impute missing census tracts. For example, a married mother is

more likely to reside in a census tract with high proportion of married women. Therefore, a

model for the proportion of married women in each census tract is needed so it can be

combined with maternal information to help impute the missing census tract indicators. The

predictors Xi are a mix of continuous and binary variables. If the jth covariate, Xji, is

continuous, we model ; if Xji is binary, we model P(Xji = 1|si) =

μj(si). In our data there is a single exposure (i.e., q = 1), which is modeled as

. If the exposure is known exactly in each census tract, then

 and μ0i(si) is the exposure for tract si. In most air pollution studies, there is

uncertainty in the exposure in each tract due to measurement error and incomplete sampling.

Our approach to dealing with the uncertainty via priors for the μji and σji is described in

Section 4. It is also straight-forward to treat [Xi|si] as a multinomial distribution where each

outcome represents a unique strata of Xi. This is particularly useful when the prior is derived

from census tables of several variables.

The third component of (2) is the prior of the residential location. We assume that 100πj% of

the mother’s reside in region j, with . For partially observed locations restricted

to si ∈ Si, the conditional prior is Prob(si = j|si ∈ Si) = πj/(Σk∈Stπk). The probabilities (π1, …,

πN) may be fixed based on census data, or given a prior to account for uncertainty in

population density.

4 Prior distributions

Spatial random effects α in (1) are modeled using a conditionally autoregressive (“CAR”)

model (Gelfand et al., 2010). The CAR model can be defined by its full conditional

distributions,
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(6)

where l ~ j indicates that regions l and j are adjacent, and mj is the number of regions that are

adjacent to region j. The CAR prior has three parameters: μ is the location, τ2 controls the

variance, and ρ ∈ [0, 1] controls the degree of spatial dependence. Combining these full

conditionals gives a multivariate normal joint distribution for α with mean (μ, …, μ)T and

covariance τ2(M − ρD)−1, where M is the diagonal matrix with diagonal elements {m1, …,

mN}, D is the adjacency matrix with (j, l) element equal to I(j ~ l), and I is the binary

indicator function. We denote this model α ~ CAR(μ, τ, ρ). For the data analysis in Section

7 we fix ρ = 1, which gives an improper intrinsic prior. For simulated data in Section 6 we

fixed ρ = 0.9, since it is not possible to simulate data from the improper model with ρ = 1.

To complete the health model, we specify uninformative priors μ, γj, ωj,  and

τ−2 ~ Gamma(0.1,0.1). Similarly, the prior for the missing data parameters are bj, cj ~

N(0,102).

The prior mean and variance of the air pollution exposure, μ0i and σ0i, are provided by the

FSD database described in Section 2. Although there is substantial variation in the daily

exposures, the uncertainty is negligible after averaging over the entire first trimester and is

therefore ignored by setting σ0 = 0. The remaining values of μj, σj, and π1, …, πN are fixed

based on census data.

5 Computational details

Although it would be straight-forward to implement in standard software such as

OpenBUGS (Lunn et al., 2009), we perform MCMC sampling using R (R Development

Core Team, 2010). We use a probit link g(x) = Φ(x), where Φ is the standard normal

distribution function, for both the health model (1) and missing data model (5). Therefore,

we introduce two auxiliary variables (Albert and Chib, 1993) for each subject, Ui and Vi,

with

(7)

The auxiliary variables relate to the responses by Yi = I(Ui > 0) and δi = I(Vi > 0).

Marginalizing over the auxiliary variables gives the desired probabilities in (1) and (5).

After introducing these latent variables, all model parameters are conjugate, and therefore

Gibbs sampling is used to generate samples from the posterior distribution.

Most of the full conditionals needed for Gibbs sampling follow from standard conjugacy

relationships. A few parameters have non-standard full conditionals, which are specified

below. The auxiliary variables have truncated normal full conditionals,
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(8)

where the truncation region is (Y) = [0, ∞] if Y = 1 and (Y) = [− ∞, 0] if Y = 0.

Conditioned on the latent variables in (7) and assuming Gaussian priors, the full conditionals

of α, γ, ω, β, b, and c follow from the usual normal/normal conjugacy relationship, and are

thus omitted. The CAR variance τ2 has the standard gamma full conditional from normal/

gamma conjugacy, and is omitted.

The final full conditional needed for the Gibbs sampler is for the missing location indices si

for observations with δi = 1. The full conditional is

(9)

the covariates are ordered so that the first p1 covariates in Xi = (Xi1, …, Xip) are Gaussian

and the remaining p − p1 are binary, and ϕ(y|m, s) is the N(m, s2) density function.

For simulated data in Section 6 we generate 10,000 samples and discard the first 1,000 as

burn-in. For the data analysis in Section 7 we generate 25,000 samples and discard the first

10,000 as burn-in. Convergence is monitored using trace plots of several representative

parameters. We find that convergence is almost immediate for this model.

6 Simulation study

The data are simulated on a 6×6 regular grid of N = 36 census tracts. The tracts are

partitioned into a 3×3 grid of counties as shown in Figure 2. Mothers’ census tracts are

randomly assigned with equal probability. The county is known for each mother, but the

census tract is missing with probability π. In addition to air pollution exposure, there is a

single (p = 1) binary predictor Xi, which is known for all mothers. We vary the mean of the

predictor by alternating columns in order to allow contrast in prevalence within a particular

county. The predictor is generated as Xi|si ~ Bernoulli(μX) for si in even numbered columns

(Figure 2) and Xi|si ~ Bernoulli(1 − μX) for si in odd numbered columns; we assume μX is

known to replicate known census information. For each mother, we randomly draw an

exposure for each census tract, . For each

simulated data set, the spatial random effects are drawn as α = [α(1), …, α(N)]T ~ CAR(μ,

σ2, ρ). The responses are then generated as
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(10)

Each simulated data set has n = 1000, ω = 0.5, μ = −1.0, σ = 0.1, and ρ = 0.9. For simplicity,

we do not include spatial covariate W(s). For each simulated dataset we fit three models:

1. Complete case (CC): discard all observations with a missing census tract

2. Spatial uncertainty (SU): treat the missing census tracts as unknown parameters

as described above

3. Oracle (O): Use all observations as if we knew the missing census tracts

Model 1 is the simplest model which ignores uncertainty in the spatial locations by

removing all problematic observations. Model 2 is our proposed approach. The final model

cannot be fit to real data because it uses information that is not known to the analyst. This is

included as a reference to gauge the effectiveness of the data imputation method.

We take as the base case for the simulation π = 0.2, μX = 0.3, β = 0.5, and ρz = 0.9. We then

simulate data for several designs by varying these four factors. For each design we generate

200 datasets. Figure 3 plots root mean-squared error (RMSE) for β, averaged over the

simulated data set. We also computed the empirical coverage probabilities. They were at or

above the nominal level for all models and simulation designs, and therefore we do not

present them here.

As expected, the RMSE of the SU model is between the RMSE of the CC and O models for

all settings. The improvement of the SU model compared to the usual CC model is highly

dependent on the percent missing. The relative mean squared error of the SU to the CC

model varies from (0.053/0.056)2 = 0.941 with π = 0.1 to (0.053/0.069)2 = 0.700 with π =

0.4. Increased variability in the mean of the covariate across census tracts (i.e., small μX)

improves the ability of the model to impute the missing census tracts. The average (over

missing observation and data set) posterior probability on the correct tract increases from

0.26 with μX = 0.5 to 0.43 with μX = 0.05. Surprisingly, this does not translate into improved

RMSE for β, as the relative MSE is fairly constant for all μX.

The SU model improves MSE for moderate signal with β = 0.25. However, for a very strong

signal, the CC model is nearly as effective as the SU model. Finally, all methods give

smaller MSE when the spatial dependence parameter for the air pollution exposure, ρZ,

increases. The spatial uncertainty model becomes increasingly efficient as the dependence

increases. The relative mean squared error of the SU to the CC model varies from

(0.058/0.066)2 = 0.900 with ρZ = 0.80 to (0.038/0.043)2 = 0.857 with ρZ = 0.99. This is

because uncertainty in the census tract is less problematic when the census tracts have

similar exposures.

7 Analysis of Georgia birth data

We examined the associations between exposure to ambient PM2.5 during the first trimester

and the risk of low birth weight (less than 2500g) and preterm birth (less than 37 gestational

week) separately via a spatial probit regression model. The total study population is 45,354
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births and the raw prevalence was 11.3% for preterm birth and 6.9% for low birth weight.

First trimester exposure was defined as the average daily PM2.5 concentrations during the

first 13 weeks of pregnancy. The model included the following confounders from the birth

records: maternal age, indicator for race, indicator for infant sex, indicator for marital status

(married or unmarried), and indicators for some college or higher and self-reported tobacco

use during pregnancy. To control for unmeasured temporal confounders, the model also

included: (1) indicators for the season of conception (spring: Mar–May, summer: Jun–Aug,

autumn: Sept–Nov, winter: Dec–Feb); and (2) a smooth function of conception date

modeled using natural cubic splines with 4 degrees of freedom. To control for spatial

confounders, we included tract-level median personal income from Census 2000 and tract-

specific spatial random intercepts via the CAR specification.

Table 2 summarizes the posteriors of the coefficients in the health and missing-tract models.

Results are given for the spatial uncertainty (SU) model and complete case (CC) models

defined in Section 6. Unmarried, black mothers without college education and with tobacco

use have a higher risk of both preterm birth and low birth weight. Also, older mothers are at

higher risk of preterm birth, and female babies are at higher risk of low birth weight. Based

on these data, there is not a statistically significant relationship between PM2.5 and either

low birth weight or preterm birth.

The effect estimates are similar for both the SU and CC models. As expected, the posterior

standard deviation is smaller for the most parameters under the SU model compared to the

CC model. For the confounding predictors (Age – Education in Table 2) for preterm birth,

the ratio of posterior variance for the CC compared to SU model ranges from

(0.0199/0.0192)2 = 1.07 for maternal race to (0.0205/0.0191)2 = 1.15 for maternal marital

status. For low birth weight, the ratio of posterior variances ranges from 1.00 for maternal

age to (0.0230/0.0215)2 = 1.14 for maternal education. These predictors are known for all

observations, even those with missing census tracts, and so the SU model provides smaller

variance due to the larger sample size. Curiously, the posterior standard deviation of the

PM2.5 effect for preterm birth is larger for the SU model than the CC model. This may be

because the increased sample size for the SU model is offset by uncertainty in the PM2.5

predictor.

The spatial random effect estimates in Figure 4 show considerable spatial variation, with

significantly lower risk in the southeast portion of the spatial domain. Figure 4c plots the

ratio of posterior variance from the CC model to the SU model. As with the fixed effects, the

variance of the random effects is considerably smaller for the SU model.

There are several statistically significant predictors of the missing census tracts (Table 2).

The results are nearly identical for preterm birth of low birth weight because the majority of

information for these parameters comes from the regression of the missing data indicators

and covariates, and these are the same for both health responses. White mothers without

college education and in tracts with a low median income are more likely to have missing

tract information. This provides information about the missing census tract, as does the

mother’s covariate information. Figure 5 shows the posterior distribution of the missing tract

index for each mother from Appling County. For all mothers, the probability for tract
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13001950400 is small, since this tract has the smallest population (9% of the county’s

population). The posterior probability for tract 13001950200 varies dramatically across

mothers. The main driver of the probability is the mother’s race and marital status; of the 5

tracts in Appling County, this tract has the highest proportion of black residents (50.5%, no

other tract exceeds 25%) and lowest proportion of married mothers (59.3%, all other tracts

exceed 66%).

8 Discussion

In this paper we develop a hierarchical Bayesian model which incorporates uncertainty

about the spatial location of the study participants. The method is straight-forward to

implement in standard MCMC algorithms. We show via simulation that properly accounting

for spatial uncertainty can lead to a substantial improvement in parameter estimation over

the standard approach of discarding incomplete observations. The method is then applied to

a study of the association between fine particulate matter and birth outcomes in Georgia.

Although this analysis did not reveal a statistically significant association, accounting for

spatial uncertainty reduced the posterior variance of the coefficients by as much as 15%. Our

simulation study suggests that reductions in variance will be even larger for studies with

more missing spatial information. For this large study where the complete case model

already gives small standard errors, the credible sets that do or do not include zero are the

same for both the complete case and spatial uncertainty model. However, more smaller

studies, a 15% reduction in posterior variance could reveal new environmental factors

relating to birth outcomes and lead to public health initiatives to improve birth outcomes.

As with many approaches to missing data problems, our analysis relies on strong

assumptions. In particular, we are assuming that after accounting for covariate effects,

accurate recording of the spatial location is independent of the response. This seems

reasonable in our setting, but this assumption should be carefully scrutinized in future

applications. Technically, the more complicated case of missing spatial locations depending

on the response is still considered missing at random, and therefore it may be possible to

include the response in the logistic regression model for the missing data indicator. This is

an area of future work.
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Figure 1.
Plot of the counties and census tracts in southern Georgia that constitute the study domain.

The white areas indicate tracts with no births during the study period.
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Figure 2.
Plot of the census tracts for the simulation study. Shading corresponds to the tract’s county.
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Figure 3.
Simulation study results. Root mean square error (MSE) is plotted by the proportion of

missing data (π), the mean of the covariate in the even numbered columns (μX), the exposure

effect β, and the spatial dependence parameter of the air pollution exposure (ρz). The Monte

Carlo standard error is between 0.0028 and 0.0056 for all RMSE estimates.
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Figure 4.
Summary of the spatial random effects α for the preterm birth analysis. Panels (a) and (b)

plot the posterior mean and standard deviation of α for the SU model, and Panel (c) plots the

ratio of posterior variance for the CC model relative to the SU model.
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Figure 5.
Posterior distribution from the preterm birth analysis for the census tract index of each

mother with a missing census tract from Appling County. Each set of 5 connected points

represents the posterior distribution of si for one mother.
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Table 1

Summary statistics of the GA birth data.

Missing Tract-level Geocode

No (N = 40,963) Yes (N = 4,391)

Preterm birth (%) 11.3 11.2

Low birth weight (%) 6.9 7.1

Female infant (%) 49.0 50.3

Married (%) 57.4 55.0

Tobacco use (%) 11.8 14.4

Maternal age

 Mean 25.5 24.8

 Standard deviation 5.7 5.5

Mother’s race (%)

 Black 35.0 27.7

 White 65.0 72.3

Mother’s education (%)

 Some college or higher 43.9 31.7

 High school or lower 56.1 68.3

Conception season (%)

 Mar–May 25.1 25.5

 Jun–Aug 23.9 23.6

 Sept–Nov 25.4 25.2

 Dec–Feb 25.6 25.7
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Table 2

Posterior mean (sd) for the Georgia birth outcomes analysis. Results are given for separate analysis of preterm

birth and low birth weight, and for complete case (CC) and spatial uncertainty (SU) models.

(a) Health model

preterm birth Low birth weight

CC SU CC SU

PM2.5 −0.0005 (0.0053) 0.0022 (0.0056) −0.0043 (0.0060) −0.0034 (0.0057)

Age 0.005 (0.002) 0.005 (0.002) 0.002 (0.002) 0.002 (0.002)

Married −0.075 (0.021) −0.074 (0.019) −0.102 (0.024) −0.105 (0.022)

Black 0.224 (0.020) 0.218 (0.019) 0.385 (0.023) 0.385 (0.022)

Female infant −0.023 (0.016) −0.028 (0.016) 0.159 (0.020) 0.161 (0.019)

Tobacco use 0.181 (0.025) 0.189 (0.024) 0.367 (0.028) 0.380 (0.026)

Education −0.084 (0.019) −0.080 (0.018) −0.093 (0.023) −0.090 (0.022)

Spring 0.057 (0.024) 0.054 (0.022) 0.044 (0.028) 0.035 (0.026)

Summer 0.036 (0.024) 0.036 (0.023) 0.019 (0.028) 0.005 (0.027)

Fall 0.040 (0.024) 0.032 (0.023) 0.017 (0.028) 0.009 (0.026)

Median Income 0.027 (0.032) 0.033 (0.031) −0.035 (0.035) −0.028 (0.032)

(b) Missing tract model

preterm birth Low birth weight

Mother’s age 0.002 (0.002) 0.002 (0.002)

Married −0.017 (0.020) −0.016 (0.020)

Black −0.318 (0.021) −0.317 (0.021)

Female infant 0.020 (0.017) 0.021 (0.017)

Tobacco use −0.009 (0.025) −0.009 (0.025)

Education −0.183 (0.019) −0.183 (0.019)

Median Income −0.831 (0.034) −0.803 (0.034)
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